
www.manaraa.com

Softw Syst Model (2016) 15:427–451
DOI 10.1007/s10270-014-0410-8

REGULAR PAPER

Component-based verification using incremental design
and invariants

Saddek Bensalem · Marius Bozga · Axel Legay ·
Thanh-Hung Nguyen · Joseph Sifakis · Rongjie Yan

Received: 4 February 2013 / Revised: 8 December 2013 / Accepted: 27 March 2014 / Published online: 24 April 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract We propose invariant-based techniques for the
efficient verification of safety and deadlock-freedom prop-
erties of component-based systems. Components and their
interactions are described in the BIP language. Global invari-
ants of composite components are obtained by combining
local invariants of their constituent components with inter-
action invariants that take interactions into account.We study
new techniques for computing interaction invariants. Some
of these techniques are incremental, i.e., interaction invari-
ants of a composite hierarchically structured component are
computed by reusing invariants of its constituents. We for-
malize incremental construction of components in the BIP
language as the process of building progressively complex

Communicated by Prof. Joanne Atlee.

Authors are in alphabetical order by last name.

The present article is an improved version of [23] and [15]. This work
has been partially supported by the European COMBEST Project No.
215543, by the “ARTEMIS CROSS-Domain Architecture ” ACROSS,
by the PRO3D Project No. 248776, by the regional CREATIVE
program of the Britany region, by Action de Recherche Collaborative”
ARC (TP)I, and by National Science Foundation of China under Grant
No. 61100074.

S. Bensalem · M. Bozga · J. Sifakis
UJF-Grenoble 1/CNRS, VERIMAG UMR 5104,
38041 Grenoble, France

A. Legay
INRIA/IRISA, 35042 Rennes, France

T.-H. Nguyen
Department of Software Engineering, Hanoi University of Science
and Technology, Hanoi, Vietnam

R. Yan (B)
State Key Laboratory of Computer Science, Beijing 100190, China
e-mail: yan.rongjie@gmail.com

components by adding interactions (synchronization con-
straints) to atomic components. We provide sufficient con-
ditions ensuring preservation of invariants when new inter-
actions are added. When these conditions are not satisfied,
we propose methods for generating new invariants in an
incremental manner by reusing existing invariants from the
constituents in the incremental construction. The reuse of
existing invariants reduces considerably the overall verifica-
tion effort. The techniques have been implemented in the D-
Finder toolset. Among the experiments conducted, we have
been capable of verifying safety properties and deadlock-
freedom of sub-systems of the functional level of the DALA
autonomous robot. This work goes far beyond the capacity
of existing monolithic verification tools.

Keywords Verification method · Invariant · Component-
based systems · Incremental design · Verification tools ·
Deadlock-freedom · BIP

1 Introduction

Component-based design confers numerous advantages, in
particular, an increased productivity through reuse of exist-
ing components. Nonetheless, establishing the correctness
of the designed systems remains an open issue. In contrast
to other engineering disciplines, software and system engi-
neering hardly ensures predictability at design time. Conse-
quently, a posteriori verification as well as empirical valida-
tion is essential for ensuring correctness of designed systems.

Monolithic verification [34,68] of component-based sys-
tems is a challenging problem. It often requires comput-
ing for a composite component the product of its con-
stituents by using both interleaving and synchronization. The

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-014-0410-8&domain=pdf

www.manaraa.com

428 S. Bensalem et al.

complexity of the product system is often prohibitive due to
state explosion.

In a series of recent works, it has been advocated that com-
positional verification techniques can be used to cope with
state explosion [35,36,43,45,49,55,66]. The key to compo-
sitional verification techniques is the application of divide-
and-conquer techniques to infer global properties of complex
systems from properties of their components.

A compositional verification method based on invariant
computation is presented in [16,17]. The method is based on
the following rule:

{Bi 〈Φi 〉}i Ψ ∈ I I (‖γ {Bi }i , {Φi }i) (
∧

i Φi) ∧ Ψ ⇒ Φ

‖γ {Bi }i 〈Φ〉
The rule allows to prove invariance of property Φ for sys-

tems obtained by using an n-ary composition operation || on
a set of components {Bi }i parameterized by a set of interac-
tions γ . It is based on the computation of a global invariant
that is the conjunction of local invariants Φi of constituent
components Bi and an interaction invariant Ψ . The latter
expresses constraints on the global state space induced by
interactions between components. In [16], we have shown
that Ψ can be computed automatically from abstractions of
the system to be verified. That is, we provide an effective
procedure, denoted I I in the rule, which allows to com-
pute interaction invariants from finite-state abstraction of
the components Bi with respect to its local invariant Φi .
The method has been implemented in the D-Finder toolset
[17] and applied to check deadlock-freedom on several case
studies described in the BIP (Behavior, Interaction, Prior-
ity) [12] language. The results of these experiments show
that D-Finder is sometimes exponentially faster for check-
ing deadlock-freedom than state-of-the-art verification tools
such as NuSMV [33].

This paper introduces new techniques for the computation
of interaction invariants. These techniques are extensions of
the one introduced earlier in [16,18] that allows the com-
putation of interaction invariants in an enumerative manner.
Our first contribution is a new symbolic technique, based on
BooleanBehavioral Constraints (BBCs), that allows to relate
interactions between different componentswith their internal
transitions. BBCs are used to compute interaction invariants
by applying two different symbolic techniques (1) by itera-
tive computation of fixpoints and (2) by solution of a set of
Boolean equations. Both techniques have been implemented
and outperform the enumerativemethod proposed in [16,18].
We have shown that the efficiency of each technique largely
depends on the architecture of the composite components to
be verified.

The second contribution is an incremental verification
method that further improves the previous BBC-based
method. The key idea is to reuse the already computed invari-
ants of the constituents of a composite component in order to

Fig. 1 Incremental design

compute global invariants. This requires the formalization of
the construction of hierarchically structured composite com-
ponents. For instance, Fig. 1 shows a composite component
obtained as the composition of two components by using a set
of interactions γ2. One of these components is the composi-
tion of two components by using the set of the interactions γ1.
The computation of invariants of the component γ1(B1, B2)

is obtained by combining invariants of the atomic compo-
nents B1 and B2 with an interaction invariant characterizing
the restriction of the interactions γ1 on the product of the
composed components. Following the incremental construc-
tion process, invariants of γ2(B3, γ1(B1, B2)) are obtained
by combining invariants of γ1(B1, B2) and invariants of B3

with an interaction invariant induced by the application of
γ2.

It is nevertheless important to mention that none of the
previously implemented methods take incremental design
aspects into account. Incremental system design often works
by adding new interactions to existing sets of components.
Each time an interaction is added, one may be interested
to verify whether the resulting system satisfies some given
property. Indeed, it is important to report an error as soon
as it appears. However, each verification step may be time
consuming, which means that intermediate verification steps
are generally avoided. This situation can be improved if the
result of the verification process is reused when new inter-
actions are added. Existing methods, including the ones in
[16,18], do not focus on such aspects ofmodular verification.

We present amethod for incremental construction and ver-
ification of component-based systems. First, we propose a
formalization of incremental component-based design. Then
we propose sufficient conditions that ensure the preservation
of invariants through the introduction of new interactions. For
cases in which these conditions are not satisfied, we propose
techniques for generation of new invariants in an incremental
manner, in which understanding the way of construction is
a prerequisite to achieve a better performance in the incre-
mental verification. We shall see that, in many situations,
the reuse of existing invariants reduces considerably the ver-
ification effort. The techniques can also be generalized to
verify other models formalized with concurrent processes,
coordinated with synchronization and interleaving between
different processes.

123

www.manaraa.com

Component-based verification using incremental design and invariants 429

The proposed techniques have been implemented within
the D-Finder toolset [17] and applied on several case stud-
ies. The experiments show that these techniques are gener-
ally much faster than the ones proposed in [16,18] for both
traditional examples and larger case studies.1 In particular,
we have been able to verify deadlock-freedom and safety
properties of a large part (tens of components, hundreds of
interactions) of the functional level of theDALAautonomous
robot.

It is important to notice that from the verified BIP model,
it is possible to generate C code. For DALA,BIP generated C
code (more than 500,000 lines) for application modules and
their coordination at execution level. The generated C code
preserves properties of theBIPmodel and deadlock-freedom
in particular.

Related work

System design is nowadays supported by a wide variety of
modeling frameworks and tools. These frameworks are usu-
ally domain specific and range fromhardwaremodeling (e.g.,
BlueSpec [27]), hardware/softwaremodeling (e.g.,Metropo-
lis [4]), concurrent systems modeling (e.g., UNITY [30],
I/O automata [61], reactive modules [3]), embedded sys-
tems modeling (e.g., Ptolemy [72]), physical system mod-
eling [48].

All the above cited frameworks are using specific cat-
egories of atomic components and particular operators for
parallel composition. In general, the choices are driven by
domain practices and perfectly fulfill the concrete needs of
system designers. In addition, all of them are rigorous as they
benefit from solid semantical foundations. In the same spirit,
the BIP framework aims at rigorous modeling and design
of component-based heterogeneous real-time systems. The
relations between BIP and these frameworks have been pre-
viously discussed in [1,12,28]. In contrast to all previously
cited approaches, the definition of BIP aims to provide a
neat separation of concerns between behavior (atomic com-
ponents) and architecture (expressed as the combination of
interactions and priorities). The composition operators used
to express architectural constraints in BIP have been chosen
such as to provide maximal expressivity. They confer to BIP
strong modeling capabilities that cannot be matched by other
languages [26].

Incremental design provides the ability to construct pro-
gressively a system by adding new components (or sub-
systems) and interactions. That is, new elements are con-
tinuously added without modifying or breaking the already
existing sub-systems and components already in place. Incre-
mental design has been already investigated in [40,58,60].

1 See Sect. 6 for detailed explanation.

Nevertheless, none of these approaches has considered the
integration of incremental constructionwith verification. The
incremental design methodology based on BIP and intro-
duced hereafter provides a sound basis to infer the proper-
ties preserved in the incremental design. Moreover, in the
case where the rule of incremental construction is violated,
it still allows to verify the correctness of system properties
by reusing the invariants of the constituents.

A detailed comparison between our verification method
[16,18] and methods based on deductive techniques [62]
or assume-guarantee techniques [35,36,43,45,49,55,57,66]
has already been provided in [16,18]. Deductive techniques
rely on finding an inductive invariant of a given program that
is stronger than the invariant to be verified. The drawback of
these techniques is that there is no good method to find such
an invariant. Assume-guarantee methods always have diffi-
culties to find decompositions into subsystems and choosing
adequate assumptions for such a particular decomposition.
Our method only requires the computation of component
invariants and interaction invariants without any additional
assumptions and thus avoid this problem.

Rely-guarantee methods are also used to verify safety
properties of multi-threaded systems [46,51,67]. Different
from assume-guarantee techniques, rely-guarantee methods
do not consider decomposition strategies. Model check-
ing over each thread is done with environment assump-
tions. Traditional model checking or predicate abstraction
can be applied for individual threads. Environment assump-
tions are established according to global variable updates
[46] or environment transitions, and their mutual dependen-
cies and refined to check specified properties [51,67]. Our
method does not distinguish local transition or global inter-
actions. We consider all the synchronized/interleaving tran-
sitions together and compute the invariants as a whole.

A series of recent works [2,41,42,59] propose composi-
tional techniques based on interface theories. The conceptual
idea is to check whether a component satisfies a property that
is expressed by an interface modeled as an automaton. Using
compositional design-based rules, one can infer the interface
that will be satisfied by the combination of the components.
Interface theories permit richer logical operations than those
available in our framework. However, the communication
primitive that drives the composition between interfaces is
not as expressive as connectors in BIP. Moreover, it is hard
to decompose the interface representing the global properties
into smaller interfaces on basic components. Finally, repre-
senting deadlock with interfaces involves a tedious task.

Incremental verification methods are also widely used in
programs analysis [38,56]. The key of these methods is the
updated points. Starting from fixed-point algorithms, valid-
ity of existing analysis is computed and the change will be
propagated according to the type of modifications [56], or
the derivation graph [38], until a fixed-point is reached. Our

123

www.manaraa.com

430 S. Bensalem et al.

incremental methods are generic and only consider the incre-
mental points in the term of involved locations.

Verifying implementations of concurrent systems is a
challenging problem which is intensively studied [5–7,24,
39]. Most of existing solutions consist in performing a sta-
tic analysis of the code and generate an abstract mathemat-
ical model [54] on which properties are verified with pow-
erful tools such as SAT solvers [44,63]. Other approaches
use theorem provers [53]. Here we take a completely differ-
ent approach. Instead of verifying the code, we ensure that
the model is correct and its correctness is preserved in the
automatically generated code by our tools. We believe that
ensuring code correctness via its model is a breakthrough as
it allows to take the incremental design into account, which
drastically helps simplify verification. Moreover, our verifi-
cation method is independent of any programming language.

Structure of the paper Section 2 introduces our composi-
tional and incremental design framework. Section 3 proposes
the formal definition of invariant and invariant preservation.
Section 4 introduces our new techniques to compute interac-
tion invariants. Sections 5 and 6 discuss implementation and
experiments that have been conducted. Finally, Sect. 7 con-
cludes the paper and suggests directions for future research.

Notations The following notations are extensively used:

– I, J, . . . , refer to finite sets of integers.
– We denote by [i, j] the set {i, i + 1, . . . , j} for any two

integers i, j such that i ≤ j .
– For a set of Boolean variables L , the predicates over L are
denoted by Bool[L].

– For a Boolean variable l ∈ L , we use l̄ to denote its nega-
tion, i.e., ¬l.

– We use classical algebraic notations for sets where ⊕ and∑
represent the union of elements in the set, and
 the

difference of two sets.

2 Component-based system design

In this section, we introduce concepts that will be used
through the rest of the paper. In Sect. 2.1, we introduce the
basic models for component-based design. In Sect. 2.2, we
propose extensions to model and reason on the incremen-
tal design of component-based systems. This is the basis for
inferring the preservation of already established properties
and efficient incremental verification.

2.1 Components and interactions

The component-based framework used in this paper is
a subset of the BIP—Behavior, Interaction, Priority—
framework [10,25]. BIP supports a component-based mod-
elingmethodology based on the assumption that components

are obtained as the superposition of three orthogonal layers,
that is:

– behavior, specified as a set of finite-state automata or 1-
safe Petri nets [32] extended with interaction ports, local
data (in form of C data variables) and data operations (in
form of C functions),

– multiparty interactions, used to coordinate the actions of
behavior and specified using hierarchically structured con-
nectors,

– dynamic priorities, used to schedule among multiple
enabled interactions and specified by priority rules.

Components are composed by layered application of mul-
tiparty interactions and of priorities. Interactions express syn-
chronization constraints between actions of the composed
components, while priorities are used to filter among pos-
sible interactions and to schedule system evolution so as to
meet performance requirements, e.g., to express scheduling
policies. Interactions are described inBIP as the combination
of two types of elementary protocols: rendez-vous to express
strong symmetric synchronization and broadcast to express
triggered asymmetric synchronization [26].

Observe that all atomic components inBIP are 1-safe Petri
nets labeled with ports and extended with local data and
data operation. Yet, atomic components represent only the
“behavior” layer of BIP models. In addition, BIP provides
the composition operators and the methodology for compo-
sition using the “interactions” and “priorities” layers. Con-
ceptually, any composite component can be represented as
an extended Petri net; however, BIP avoids the explicit con-
struction and manipulation of such nets. Instead, it always
considers the layered/structured representation of the model
in terms of atomic components and glue operators.

Using less expressive frameworks based on simpler com-
position operators often leads to intractable models when
used to express high-level coordination. Modeling multi-
party interaction in frameworks supporting only point-to-
point interaction, e.g., binary synchronization as in CCS or
function call, requires the use of protocols. This leads to
overly complexmodels with complicated coordination struc-
ture. Additionally, interactions and priorities define a clean
and abstract concept of system architecture which is fully
separated from behavior. Architecture in BIP is a first class
concept with well-defined semantics that can be analyzed
and transformed.

The usefulness of BIP has been also empirically assessed
on a large basis of examples and industrial case studies.
There exists methods and tools2 for generating BIP models
from programming languages and/or programming models
withwell-defined operational semantics. They includemodel

2 See http://www.bip-components.com for the complete list.

123

http://www.bip-components.com

www.manaraa.com

Component-based verification using incremental design and invariants 431

generators for languages such as C, Lustre, Simulink, and
NesC/TinyOS or for programmingmodels such as DOL[71],
GeNoM[47] and have been illustrated in [8,13,21,29].More-
over, BIP has been also used to develop from scratch
component-based models of complex systems including het-
erogeneous communication networks [9,11] and multimedia
systems [14]. For these successful applications, BIP has also
been used in many industrial projects such as ASCENS,3

PRO3D4 and ACROSS.5

BIP can model component-based heterogeneous systems
with features such as clocks and various data types. However,
in this paper, we restrict ourselves to a strict subset of BIP,
that is, without data and without dynamic priorities.

We have previously shown in [16] how data can be taken
into account for computing invariants through abstraction.
Regarding priorities, we do not consider them, however, let
us remark that priorities preserve invariant properties and
deadlock-freedom [50].

Behavior is represented through atomic components. An
atomic component is a transition system whose transitions
are labeled by ports. Ports are used for interacting with other
components. Formally, we have the following definition.

Definition 1 (atomic component) An atomic component is
a transition system B = (L , P, T), where:

– L = {l1, l2, . . . , lk} is a set of control locations,
– P is a set of ports,
– T ⊆ L × P × L is a set of transitions.

Given τ = (l, p, l ′) ∈ T , l and l ′ are the source and destina-
tion locations, respectively. We use •τ and τ • to refer to the
source and destination of τ , respectively. We also denote by
port (τ) the port of a transition τ . In what follows, we shall
consider locations to be Boolean variables; the variable for a
location being true iff the component is currently in the given
location. However, we shall observe that the language ofBIP
is more general and also allows to attach value of structured
variable to a given location. Considering this extension of the
language remains beyond the scope of the present paper.

Example 1 Figure 2 presents three atomic components B1,

B2, and B3. In the graphic representation, we use circles to
describe locations, arrows between circles for transitions and
bullets on components for ports. The ports of component B1

are p3 and q3. B1 has two control locations: l3 and l4 and two
transitions: τ11 = (l3, p3, l4) and τ12 = (l4, q3, l3).

3 http://www-verimag.imag.fr/ASCENS.html.
4 http://www-verimag.imag.fr/PRO3D.html.
5 http://www-verimag.imag.fr/ACROSS.html.

Fig. 2 Running example

In BIP, components are composed via interactions, i.e.,
by synchronization on ports for their corresponding synchro-
nized transitions.An interaction requires that atmost one port
from any component can join the synchronization.

Definition 2 (interactions, connectors) Given a set of n
components {Bi = (Li , Pi , Ti)}1≤i≤n , an interaction a is a
set of ports from

⋃n
i=1 Pi , such that ∀i ∈ [1, n]. |a∩Pi | ≤ 1.

A connector is a set of interactions.

Interactions are represented by lines connecting the ports
in the graphic representation. As an example, the interac-
tion {p1, p3} between components B1 and B2 given in Fig. 2
describes a synchronization between components B1 and B2

by ports p1 and p3. Another interaction is given by the
set {q1, q3}. The connector for B1, B2 and B3 is the set
{{p1, p3}, {q1, q3}, {p2, p4}, {q2, q4}}.We simplify the nota-
tions and write p1 p2 . . . pk instead of {p1, . . . , pk} for
an interaction. We also write a1 ⊕ · · · ⊕ am for the con-
nector {a1, . . . , am}, where ⊕ is associative. The connec-
tor {{p1, p3}, {q1, q3}, {p2, p4}, {q2, q4}} becomes p1 p3 ⊕
q1 q3 ⊕ p2 p4 ⊕ q2 q4.

We use I (P) to denote the set of all interactions that are
defined over a given set of ports P and Γ (P) as the set of all
connectors over P .

Interactions define communication between components
obtainedby synchronization of different transitions. The rela-
tion between interactions and interacting transitions is cap-
tured by the following definition.

We define, respectively, composite component and sys-
tem.

Definition 3 (composite component, system) Given a set
of n atomic components {Bi = (Li , Pi , Ti)}1≤i≤n and
a connector γ , we define the composite component B =
γ (B1, . . . , Bn) as the transition system (L, γ, T), where:

– L = L1 × L2 × · · · × Ln is the set of global states,
– γ is the set of interactions,

123

http://www-verimag.imag.fr/ASCENS.html
http://www-verimag.imag.fr/PRO3D.html
http://www-verimag.imag.fr/ACROSS.html

www.manaraa.com

432 S. Bensalem et al.

– T ⊆ L× γ ×L contains transitions τ = ((l1, . . . , ln), a,
(l ′1, . . . , l ′n)) satisfying the following rule:

I ⊆ [1, n] a = {pi }i∈I ∈ γ ∀i ∈ I li
pi−→i l ′i ∀i /∈ I li = l ′i

(l1, . . . , ln)
a−→ (l ′1, . . . , l ′n)

AsystemS is a pair 〈B, I ni t〉with I ni t ∈ Bool[⋃n
i=1 Li]

characterizing the initial conditionof Bwhere Bool[⋃n
i=1Li]

is the set of Boolean expressions on
⋃n

i=1 Li .

Given an interaction a, only those components that are
involved in a make a step. If a component does not partici-
pate to the interaction, then it remains in the same state.6 The
component γ⊥(B1, . . . , Bn), which is obtained by applying
the connector γ⊥ = ∑n

i=1(
∑

p∈Pi p), is the transition sys-
tem obtained by interleaving the transitions of atomic com-
ponents.

Observe that any composite component can be viewed as
a basic component in more complex designs.

Example 2 The composite component in Fig. 2 is defined by
γ (B1, B2, B3), where γ = p1 p3 ⊕ q1 q3 ⊕ p2 p4 ⊕ q2 q4.

We define Forward Interaction Sets of a location accord-
ing to a set of interactions.

Definition 4 (forward interaction sets) Let γ be a connec-
tor over a set of components {Bi = (Li , Pi , Ti)}1≤i≤n . We
define for every location l ∈ ⋃n

i=1 Li its forward interaction
set as follows:

l•γ = {{τi1 . . . τik }|(∀ j ∈ [1, k].i j ∈ [1, n] ∧ (τi j ∈ Ti j))
∧ (∃ j ∈ [1, k].•τi j = l)

∧ ({port (τi1) . . . port (τik)} ∈ γ)}.

That is, l•γ contains sets of synchronized transitions by inter-
actions of γ having at least one outgoing transition from l.

Example 3 Consider the components given in Fig. 2. Given
γ = p1 p3 ⊕ q1q3 ⊕ p2 p4 ⊕ q2q4,we have l•0γ

=
{{τ21, τ11}, {τ23, τ31}}, l•0 (p1 p3)

={{τ21, τ11}}, and l•0 (p2 p4)
=

{{τ23, τ31}}.
An additional example is shown in Fig. 3. This example

contains a component (B2) that is non-deterministic. Given
γ = {p1 p2}, we have l•1γ

= l•3γ
= {{τ11, τ21}, {τ11, τ22}}.

Remark 1 Given a set of n components {Bi = (Li , Pi ,
Ti)}1≤i≤n and two interactions a, b ∈ I (P) with P =⋃n

i=1 Pi , we have l
•
a⊕b = l•a ∪ l•b for any l ∈ ⋃n

i=1 Li .

6 If an interaction only allows two ports, the composite component
returns to the traditional transition system with pair-wise synchroniza-
tion

Fig. 3 A non-deterministic example

2.2 Incremental design

In component-based design, the construction of systems is
both step-wise and hierarchical. A step consists in adding
interaction (increment) at the same layer of the hierarchy in
order to produce its next layer. In the rest of the paper, we
focus on two kinds of operations that are layering and super-
position. The first operation merges existing interactions of
a layer with increments, while the second superposes incre-
ments over the same layer.

The basic unit for the construction is a set of atomic com-
ponents available through a library of components that one
assumed to be provided to the user. Those components con-
stitute the first layer of the hierarchy. Atomic components
are composed together in order to create the second layer of
the hierarchy, that is a set of composite components. Those
new components can be viewed as atomic components for the
construction of the third layer of the hierarchy. The process
can be repeated multiple times in order to build arbitrary
complex hierarchies in a bottom-up manner. In what fol-
lows, we will say that layers of the hierarchy are obtained
by adding increments to existing interactions between com-
ponents. The rest of the section is divided as follows. Section
2.2.1 defines the operations used in incremental design flow
of component-based systems. Section 2.2.2 studies relations
between the components built along the flow. In what fol-
lows, we assume that all interactions are over components
{Bi = (Li , Pi , Ti)}1≤i≤n with P = ⋃n

i=1 Pi .

2.2.1 Incremental construction

When building a composite system in a bottom-up manner, it
is essential that some already enforced synchronizations are
not jeopardized when new interactions are added. To guaran-
tee this property, we introduce the notion of forbidden inter-
actions.

Definition 5 (closure and forbidden interactions) Let γ be
a connector.

123

www.manaraa.com

Component-based verification using incremental design and invariants 433

– The closure γ c of γ is the set of the non-empty interactions
contained in some interaction of γ . That is γ c = {a �=
∅ | ∃b ∈ γ. a ⊆ b}.

– The forbidden interactions γ f of γ is the set of the inter-
actions strictly contained in all the interactions of γ . That
is γ f = γ c
 γ , where “
 ” is set difference.

Example 4 Consider the interaction p1 p3 of the example
given in Fig. 2. According to Definition 5, the closure of
p1 p3 is (p1 p3)c = {p1 p3, p1, p3}, and its forbidden set is
(p1 p3) f = (p1 p3)c
 p1 p3 = {p1, p3}.

For two connectors γ1 and γ2, we have:

(γ1⊕γ2)
c=γ c

1 ⊕γ c
2 and (γ1⊕γ2)

f =(γ1⊕γ2)
c
 γ1
 γ2.

A connector describes a set of interactions. We assume that
composite components are obtained from their constituents
by further enforcing synchronization by using increments.
Intuitively, an increment is obtained by merging existing
interactions of a connector. We have the following defini-
tion.

Definition 6 (increments) Consider a connector γ ∈ Γ (P).
We say δ is an increment over γ if for any interaction a ∈ δ

we have interactions (b j) j∈J ⊆ γ such that Π j∈J b j = a,
where Π represents the fusion of interactions into one.

In practice, one has to make sure that existing interac-
tions defined by γ will not break the synchronizations that
are enforced by the increment δ. Those forbidden interactions
require weaker synchronization that may violate the stronger
synchronization required by the increment. To avoid them,
we remove from the original connector γ all the interactions
that are forbidden by δ. This is done with the operation of
Layering, which describes how an increment can be added
to an existing set of interactions without breaking synchro-
nization enforced by the increment. Formally, we have the
following definition.

Definition 7 (layering) Given a connector γ and an incre-
ment δ over γ , the new connector obtained by combining
δ and γ , also called layering, is given by the following set
δγ = (γ
δ f)⊕δ the incremental construction by layering,
that is, the incremental modification of γ by δ.

The above definition describes one-layer incremental con-
struction. By successive applications of increments, we can
construct a system with multiple layers.

Example 5 Consider the connector γ = ∑4
i=1 pi ⊕ qi that

is defined over the components in Fig. 2. An increment over
γ is δ1 = p1 p3 ⊕ q1 q3. According to Definition 7, one
layering by increment δ1 over connector γ is

δ1γ = (γ
 δ
f
1) ⊕ δ1

= ((p1 ⊕ p2 ⊕ p3 ⊕ p4 ⊕ q1 ⊕ q2 ⊕ q3 ⊕ q4)

(p1 ⊕ p3 ⊕ q1 ⊕ q3)) ⊕ (p1 p3 ⊕ q1q3)

= p1 p3 ⊕ q1q3 ⊕ p2 ⊕ q2 ⊕ p4 ⊕ q4.

Besides the layering of interactions, incremental construc-
tion can also be obtained by first combining increments
enforcing synchronization at the same layer. To combine
many increments at the same layer into a single increment,
we use the operation of Superposition defined as follows.

Definition 8 (superposition) Given two increments δ1, δ2
over a connector γ , the operation of superposition between
δ1 and δ2 is defined by their union δ1 ⊕ δ2.7

Notice that in general (δ1 ⊕ δ2)γ is different from δ1δ2γ .
In the first term, δ1 and δ2 are in the same layer, while the suc-
cessive application of increments defines two distinct layers.

At this stage, the reader understand that incremental con-
struction involves both layering and superposition. Indeed,
when we consider the whole system, we need to take the
superposition of increments from different constituents over
the same connector. Meanwhile, the concern of a system can
be separated to different increments. Formally, we have the
following proposition.

Proposition 1 Let γ ∈ Γ (P) be a connector, the incre-
mental construction by the superposition of n increments
{δi }1≤i≤n of γ is given by

(
n∑

i=1

δi

)

γ =
⎛

⎝γ

(

n∑

i=1

δi

) f
⎞

⎠ ⊕
n∑

i=1

δi . (1)

The above proposition provides a way to transform incre-
mental construction by a set of increments into the separate
constituents, where γ
 (n

i=1δi)
f is the set of interactions

that are allowed during the incremental construction process.

Example 6 Continue Example 5 and let δ2 = p2 p4 ⊕
q2 q4 be the second increment. The incremental construc-
tion obtained by superposition of two increments δ1 and δ2
over γ is

(δ1 ⊕ δ2)γ = (p1 ⊕ p2 ⊕ p3 ⊕ p4 ⊕ q1 ⊕ q2 ⊕ q3 ⊕ q4

(p1 ⊕ p3 ⊕ q1 ⊕ q3 ⊕ p2

⊕p4 ⊕ q2 ⊕ q4)) ⊕ p1 p3 ⊕ q1 q3 ⊕ p2 p4

⊕q2 q4= p1 p3⊕q1 q3⊕ p2 p4 ⊕ q2 q4.

7 As increments are sets of interactions, we use⊕ for the union between
two increments.

123

www.manaraa.com

434 S. Bensalem et al.

2.2.2 Looser synchronization preorder

As we have seen, interactions characterize the behavior of
a composite component. We first study relations between
interactions and then step on a relation between connectors
to reason about the features of incremental design in Sect.
3.2.

We consider the following notation of conflict between
interactions.

Definition 9 (conflict-free interactions) Given a connector
γ and interactions a1, a2 ∈ γ , such that a1 ∩ a2 = ∅, we
say that there is no conflict between a1 and a2.

Definition 10 (looser synchronization preorder) We define
the looser synchronization preorder �⊆ Γ (P) × Γ (P). For
two connectors γ1, γ2, γ1 � γ2 if for any interaction a ∈
γ2, there exist interactions b1, . . . , bn ∈ γ1, such that a =
Πn

i=1bi and there is no conflict between any bi and b j , where
i, j ∈ [1, n] and i �= j . We simply say that γ1 is looser than
γ2.

The above definition says that stronger synchronization is
obtained by the fusion of conflict-free interactions. The rea-
son is that conflicting interactions may interfere, i.e., the exe-
cution of one interaction disables another conflicting inter-
action. If conflicting interactions are synchronized by using
increments, this will violate initial design constraints. Notice
that connectors γ1, γ2, γ3, γ4 such that γ1 � γ2, and
γ3 � γ4, we have γ1 ⊕ γ3 � γ2 ⊕ γ4.

Definition 11 (interference-free connectors) We say that
two connectors γ1, γ2 ∈ Γ (P) are interference-free if for
any a1 ∈ γ1, a2 ∈ γ2, either a1 and a2 are conflict-free or
a1 = a2.

Observe that if two connectors are interference-free, syn-
chronizations enforced by one will not break or block syn-
chronizations enforced by the other. Though we require that
the interactions between γ1 and γ2 are conflict-free, γ1 or
γ2, respectively, may contain conflicting interactions. For
example, consider two connectors γ1 = p1 p2 ⊕ p2 p3
and γ2 = p4 p5. γ1 is not conflict-free, but γ1 and γ2 are
interference-free.

Lemma 1 Given two interference-free connectors γ1, γ2 ∈
Γ (P), we have γ1 ∩ γ

f
2 = ∅ and γ2 ∩ γ

f
1 = ∅, and (γ1 ⊕

γ2)
f = γ

f
1 ⊕ γ

f
2 .

Proof Since γ1 and γ2 are interference-free, if γ1 ∩ γ2 = ∅,
we have γ1∩γ

f
2 = ∅ and γ2∩γ

f
1 = ∅. If γ1∩γ2 �= ∅, for any

a ∈ γ1 ∩ γ2, we know that a /∈ γ
f
1 and a /∈ γ

f
2 . Therefore,

γ1 ∩ γ
f
2 = ∅ and γ2 ∩ γ

f
1 = ∅ still hold. According to

Definition 5, we have (γ1 ⊕ γ2)
f = γ c

1 ⊕ γ c
2
 (γ1 ⊕ γ2) =

(γ c
1
 (γ1 ⊕ γ2)) ⊕ (γ c

2
 (γ1 ⊕ γ2)). Since γ1 and γ2 are

interference-free, γ c
1
 (γ1 ⊕ γ2) = γ c

1
 γ1 = γ
f
1 and

γ c
2
(γ1⊕γ2) = γ

f
2 . So we have (γ1⊕γ2)

f = γ
f
1 ⊕γ

f
2 . ��

Example 7 Consider the interactions in Fig. 2. Let γ1 =
p1 p3 ⊕ q1 q3 and γ2 = p2 p4 ⊕ q2 q4. We have that γ1
and γ2 are interference-free.

3 Invariants and invariant preservation

In this section, we first recap the concept of invariant which
we will use to verify properties of systems. As we have intro-
duced incremental design and a preorder between two set of
interactions in Sect. 2.2, we now relate the preorder relation
with invariant concepts to propose sufficient conditions to
guarantee that already satisfied invariants are not violated
when new interactions are added to the design.

3.1 Component and system invariants

We now define the concept of invariants for components and
systems.

Definition 12 (inductive invariants) Given a component
B = (L , P, T), a predicate Φ on L is an inductive invariant
of B, denoted by inv(B, Φ), if for any location l ∈ L and

any port p ∈ P , Φ(l) and l
p−→ l ′ ∈ T imply Φ(l ′), where

Φ(l) means that l satisfies Φ.

Let B = γ (B1, . . . , Bn) be the composition of n compo-
nents with Bi = (Li , Pi , Ti) for i ∈ [1, n]. An inductive
invariant on Bi is called a component invariant, and an invari-
ant involving locations of several components is called an
interaction invariant. An interaction invariant expresses con-
straints on the global state space L1× L2×· · ·× Ln induced
by interactions. We will assume that interaction invariants
are predicates on

⋃n
i=1 Li .

Definition 13 (system invariant) For a systemS=〈B, I ni t〉,
Φ is a system invariant of S, denoted by inv(S, Φ), if there
exists an inductive invariant Φ ′ of B such that I ni t ⇒ Φ ′
and Φ ′ ⇒ Φ.

Intuitively, system invariants are the predicates that are
true at any reachable state. An invariant of a system is an
over-approximation of its set of reachable states.

Definition 14 (reachable states) Given a component γ (B)

with a set of states L, we define reach(s, γ (B)) = {si ∈
L |∃a1, . . . , an ∈ γ.s = s0

a1−→ s1
a2−→ · · · an−→ sn} the set of

reachable states from s ∈ L by interactions of γ .

The above definition provides a notation for the set of
reachable states from a state s through all possible interac-
tions in γ (B). If there is no executable interaction from s,
we have that reach(s, γ (B)) = {s}.

123

www.manaraa.com

Component-based verification using incremental design and invariants 435

Invariants can be used to check deadlock-freedom as
explained below. Global deadlocks are states where no inter-
action can be executed. They depend on the enabling condi-
tion of all interactions. For a given interaction a, its enabling
condition characterizes all the global states fromwhich it can
be executed, that is, all the states from which all the ports
involved in the interaction are ready for synchronization. A
port is ready if at least one of its transitions is enabled.

Consider a set of components {Bi = {Li , Pi , Ti }}1≤i≤n

with T = ⋃n
i=1 Ti , and a set of transitions T ′ ⊆ T such that

port (τi) �= port (τ j) for any distinct τi , τ j ∈ T ′ and let
port (T ′) = {port (τ) |τ ∈ T ′} be the set of ports labeling
them. Let en(a) be the set of all the states fromwhich interac-
tiona canbe executed, i.e., en(a) = ∨

port (T ′)=a(
∧

τ∈T ′ •τ).
The predicate DI S = ∧

a∈γ ¬en(a) characterizes the set of
the states of γ (B1, . . . , Bn) from which all interactions are
disabled.

A component is deadlock-free iff the predicate ¬DI S is
an invariant. Obviously, in that case, all the reachable states
of the component satisfy ¬DI S which means that no state
in DI S is reachable.

3.2 Invariant preservation

We extensively use the following well-known result about
invariants [16].

Theorem 1 If Φ1, Φ2 are invariants of B (respectively S),
then Φ1 ∧ Φ2 and Φ1 ∨ Φ2 are also invariants of B (respec-
tively S).

An invariant is an over-approximation of the set of reach-
able states. The relation between sets of reachable states,
which are obtained by applying, respectively, two connectors
over the same set of components, provides a way to reason
about invariant preservation.

Lemma 2 Given two connectors γ1, γ2 over B with a set
of states L, if γ1 � γ2, we have reach(s, γ2(B)) ⊆
reach(s, γ1(B)), for any s ∈ L.

Proof Let s
a1−→ s1

a2−→ · · · am−→ sm be an execution sequence
from s ∈ L in γ2(B), where ai ∈ γ2 for i ∈ [1, m]. Since
γ1 � γ2, we have that for any ai , there exists a set of conflict-
free interactions b j ∈ γ1 such that ai = Πk

j=1b j . From any
state si in the sequence started from s in γ2(B), there exists

a set of interactions
⋃k

j=1 b j such that si
b1−→ · · · bk−→ si+1.

Therefore, we conclude that reach(s, γ2(B)) ⊆ reach(s,
γ1(B)) for any s ∈ L. ��

This lemma shows that from the same state, the set of
reachable states under a tighter connector is always a subset
of reachable states under a looser connector.

We now propose the following proposition which estab-
lishes a link between the looser synchronization preorder and
invariant preservation.

Proposition 2 Let γ1, γ2 be two connectors over B. If γ1 �
γ2, we have inv(γ1(B), Φ) ⇒ inv(γ2(B),Φ), for all Φ.

Proof Consider reach(s, γ2(B)) ⊆ reach(s, γ1(B)). For
any s′ ∈ reach(s, γ2(B)), s′ is reachable in γ1(B).
As inv(γ1(B),Φ) is true, according to Definition 12, we
also have Φ(s′). So we can conclude that inv(γ2(B),Φ) is
true. ��

The above proposition, which will be used in the incre-
mental verification, simply says that if an invariant is sat-
isfied, then it will be preserved when combinations of
conflict-free interactions are added (following our incremen-
tal methodology) to the connector. This is not surprising as
the tighter connector can only restrict the behaviors of the
composite system.

We now provide sufficient conditions to guarantee that
invariants are preserved by the incremental construction
through layering of a tighter increment over its connector.

Proposition 3 Let γ be a connector and δ be an increment
of γ such that γ � δ, then we have γ � δγ .

Proof Because γ � γ
 δ f , we have γ � (γ
 δ f) ⊕ δ =
δγ . ��

The above proposition, together with Proposition 2, says
that the addition of an increment preserves the invariant if
the initial connector is looser than the increment.

We continue our study and discuss the invariant preser-
vation between the components obtained from superposition
of increments and separately applying increments over the
same set of components.

We now present the main result of the subsection.

Proposition 4 Consider two increments δ1, δ2 over γ (B)

such that γ � δ1 and γ � δ2. If δ1 and δ2 are interference-
free, and inv(δ1γ (B),Φ1), inv(δ2γ (B),Φ2), we have
inv((δ1 ⊕ δ2)γ (B),Φ1 ∧ Φ2).

Proof Wewill show that δ1γ � (δ1⊕δ2)γ and δ2γ � (δ1⊕
δ2)γ , then the conclusion can be obtained from Proposition
2.

Since δ1 and δ2 are interference-free, we have that (δ1 ⊕
δ2)

f = δ
f
1 ⊕ δ

f
2 and γ
 (δ1 ⊕ δ2)

f = γ
 (δ
f
1 ⊕ δ

f
2).

As γ
 (δ
f
1 ⊕ δ

f
2) ⊆ γ
 δ

f
1 , we obtain that γ
 δ

f
1 �

γ
 (δ
f
1 ⊕ δ

f
2) and γ
 δ

f
1 ⊕ δ1 � γ
 (δ

f
1 ⊕ δ

f
2) ⊕ δ1.

Moreover, δ2 ∩ δ
f
1 = ∅ and γ � δ2, and thus γ
 δ

f
1 � δ2.

So γ
δ
f
1 ⊕δ1 � γ
(δ

f
1 ⊕δ

f
2)⊕δ1⊕δ2. The same rule can

be applied to δ2γ . Therefore, we have δ1γ � (δ1 ⊕ δ2)γ and
δ2γ � (δ1 ⊕ δ2)γ , thus inv((δ1 ⊕ δ2)γ (B),Φ1 ∧ Φ2). ��

123

www.manaraa.com

436 S. Bensalem et al.

Fig. 4 Invariant preservation for looser synchronization relation

The above proposition extends to a set of increments
{δi }1≤i≤n over γ that are interference-free. The proposition
says that if for any δi the separate application of increments
over component δiγ (B) preserves the original invariants of
γ (B), then the system obtained by considering the superpo-
sition of increments over γ preserves the conjunction of the
invariants of individual increments.

We now briefly study the relation between the looser syn-
chronization preorder and property preservation. Figure 4
shows system construction in a space of two dimensions:
Behavior × I nteractions, for the refinement relation
between behaviors and the preorder relation between inter-
actions.We shall see that the looser synchronization preorder
along the interaction axis preserves invariants (Proposition 4).
This means that the preorder preserves reachability proper-
ties when new interactions are enforced (shown by the right
arrow in Fig. 4). On the other hand, the preorder does not
preserve deadlock-freedom. Indeed, adding new interactions
may lead to the addition of newdeadlocks.Given twoconnec-
tors γ1 and γ2 over component B such that γ2 is tighter than
γ1, i.e., γ1 � γ2, we can conclude that if γ2(B) is deadlock-
free, then γ1(B) is deadlock-free. However, we can still reuse
the invariant of γ1(B) as an over-approximation of the one
of γ2(B).

Discussion Although by using invariant preservation
results we can infer that invariants of constituents are also
invariants of a composite system, not all the computed invari-
ants of the latter are conjunctions of invariants of the con-
stituents. Consider the example given in Fig. 2 and let γ =
∑4

i=1 pi ⊕ qi , δ1 = p1 p3 ⊕ q1 q3, and δ2 = p2 p4 ⊕ q2 q4.
By using the technique presented in the next section, we shall
see that a global invariant for δ1γ (B) is

(l0 + l1 + l2)(l3 + l4)(l5 + l6)(l1 + l3)(l0 + l2 + l4).

Similarly, a global invariant for δ2γ (B) is

(l0 + l1 + l2)(l3 + l4)(l5 + l6)(l2 + l5)(l0 + l1 + l6).

By applying Proposition 4, we obtain that the conjunction of
these two invariants is preserved for (δ1 ⊕ δ2)γ (B):

(l0 + l1 + l2)(l3 + l4)(l5 + l6)(l1 + l3)(l2 + l5)

(l0 + l2 + l4)(l0 + l1 + l6).

Nevertheless, this invariant is less strong than the invariant

(l0 + l1 + l2)(l3 + l4)(l5 + l6)(l1 + l3)(l2 + l5)

(l0 + l2 + l4)(l0 + l1 + l6)(l0 + l4 + l6)

that is directly computed on (δ1 ⊕ δ2)γ (B).

4 Efficient computation of interaction invariants

In this section, we will propose two new and efficient tech-
niques to compute globally the interaction invariant of a com-
posite component and propose heuristics to speed up the two
global methods.

All the techniques are based on the constraint descrip-
tion of interactions over local components, which is called
Boolean Behavioral Constraints. The effect of an interac-
tion on a local view is encoded by the implication relation
between the locations being one of the preconditions to trig-
ger the interaction and the reachable locations in the involved
components by executing the interaction.

The first global technique computes the solutions of all
the constraints. The crux of this technique is to transfer the
implications in disjunctive normal form (DNF) and take the
dual of the final resultswhich only keep positive formof loca-
tion variables to generate interaction invariants. The name of
this method (positive mapping) comes from the mapping on
positive location variables in the computation.

The second global technique transfers the constraints in
the form of implications to equations. For all the locations,
it traces the effect of these equations on the locations and the
chain of reachable locations through executing the interac-
tions, until a fixpoint is reached.

By considering incremental construction and reasoning
the relationship between interactions from different con-
stituents, we observe that locations involved in the interac-
tions of different constituents play a key role in invariant
computation. The two techniques to enhance scalability are
adapted on the analysis of these locations in the forms of the
two global techniques. The basic idea is to reuse the already
established results from constituents and compute the new
invariants caused by the integrating of constituents.

The organization of this section is described as follows:

– in Sect. 4.1, the positivemapping technique allows to char-
acterize all interaction invariants by a global symbolic
manipulation of the set of Boolean behavioral constraints,

– in Sect. 4.2, the fixpoint-based technique allows to spread
the global symbolic computation on the set of locations
and interactions,

– in Sect. 4.3, the incremental positive mapping technique
is an extension of the positive mapping technique which
takes incremental construction into account,

123

www.manaraa.com

Component-based verification using incremental design and invariants 437

– finally, in Sect. 4.4, the incremental fixpoint technique is
an extension of the fixpoint technique which takes incre-
mental construction into account.

Wefirst introduceBooleanBehavioralConstraints (BBC).
Aswe shall see in Sects. 4.1 and 4.2, solutions ofBBCs can be
used to symbolically compute interaction invariants. BBCs
highly characterize the effect of interactions of a composite
component on the behavior of each one of its constituents
by the implications between Boolean location variables. The
effect of an interaction starts from a location whose outgoing
transition is labeled by some port in the interaction, to the
set of local locations that can be reached by triggering the
interaction and tracing the involved transitions.

Definition 15 (Boolean behavioral constraints (BBCs)) Let
γ be a connector over a set of n components B =
(B1, . . . , Bn) with Bi = (Li , Pi , Ti) for i ∈ [1, n] and
L = ⋃n

i=1 Li . The Boolean behavioral constraints for com-
ponent γ (B) are given by the function |·| : γ (B) → Bool[L]
such that

|γ (B)| =
∧

a∈γ

|a(B)|, |a(B)|

=
∧

l∈L∧l•a �=∅

⎛

⎝l ⇒
∧

X∈l•a

(
∨

τ∈X∧l ′=τ •
l ′
)⎞

⎠ . (2)

For the simplicity of notations, we use σl(a) to represent
the right side of the implication

∧
X∈l•a (

∨
τ∈X∧l ′=τ • l ′) in

(2). If γ = ∅, then |γ (B)| = true, which means that no
interactions between the components of Bwill be considered.

As using∧ and∨ in BBCs increases the length of the rep-
resentations, in the following examples, we use + instead of
∧ and omit ∨ for a succinct representation of computations.

Example 8 Consider the components given in Fig. 2. To
obtain the BBC |(p1 p3)(B)|, we first need to compute the
forward interaction sets of interaction p1 p3 for every loca-
tion in the components of Fig. 2. According to Definition 4,
we have that l0•

p1 p3 = l3•
p1 p3 = {{τ21, τ11}}, and the forward

interaction sets for other locations are empty. Therefore, we
have

|(p1 p3)(B)| = (l0 ⇒ l1 + l4)(l3 ⇒ l1 + l4).

Consider the example with a non-deterministic component
in Fig. 3. The forward interaction sets of interaction p1 p2 for
involved locations are l•1γ

= l•3γ
= {{τ11, τ21}, {τ11, τ22}}.

We have the BBCs:

|(p1 p2)(B)| = (l1 ⇒ (l2 + l4)(l2 + l5))

(l3 ⇒ (l2 + l4)(l2 + l5)).

Roughly speaking, one implication l ⇒ σl(a) in BBCs
describes a constraint on l that is restricted by an interaction
of γ issued from l. We will now show howBBCs can be used
to compute interaction invariants.

4.1 Positive mapping-based interaction invariant
computation

We showhow interaction invariants can be computed directly
from the solutions of BBCs. Given a solution defined as an
assignment of Boolean values to locations, an interaction
invariant is the disjunction of the locations assigned to true.
The method consists in putting a BBC into DNF and taking
for each monomial the disjunction of its positive variables.
Due to this character, we call this technique computation by
Positive Mapping (PM).

The following example illustrates the first step of the
method.

Example 9 Consider the components given in Fig. 2 and the
following connector γ = p1 p3 ⊕ p2 p4 ⊕ q1q3 ⊕ q2q4. The
BBC |(p1 p3)(B)|, |(p2 p4)(B)|, |(q1q3)(B)|, |(q2q4)(B)|
are, respectively, given by:

|(p1 p3)(B)| = (l0 ⇒ l1 + l4)(l3 ⇒ l1 + l4) = l̄0l̄3 + l1 + l4,

|(p2 p4)(B)| = (l0 ⇒ l2 + l6)(l5 ⇒ l2 + l6) = l̄0l̄5 + l2 + l6,

|(q1q3)(B)| = (l1 ⇒ l0 + l3)(l4 ⇒ l0 + l3) = l̄1l̄4 + l0 + l3,

|(q2q4)(B)| = (l2 ⇒ l0 + l5)(l6 ⇒ l0 + l5) = l̄2l̄6 + l0 + l5.

The BBC for γ (B) is

|γ (B)| = |(p1 p3)(B)| ∧ |(q1q3)(B)| ∧ |(p2 p4)(B)| ∧ |(q2q4)(B)|
= l̄0l̄1l̄2l̄3l̄4l̄5l̄6 + l̄0l̄1l̄2l̄3l̄4l2l5 + l̄0l̄1l̄3l̄4l5l6

+l̄0l̄2l̄5l̄6l1l3 + l̄0l̄2l̄5l̄6l3l4 + l0l1l2 + l0l1l6 + l1l2l3l5

+l1l3l5l6 + l0l2l4 + l0l4l6 + l2l3l4l5 + l3l4l5l6.

Theorem 2 Let γ be a connector over a set of n components
B = (B1, . . . , Bn) with Bi = (Li , Pi , Ti) for i ∈ [1, n] and
L = ⋃n

i=1 Li , and v : L → {true, f alse} be a Boolean
valuation different from false. If v is a solution of |γ (B)|, i.e.,
|γ (B)|(v) = true, then

∨
v(l)=true l is an inductive invariant

of γ (B).

Proof According to Definition 15, a BBC is the conjunc-
tion of all the implications for interactions of γ . Consider a
valuation v such that |γ (B)|(v) = true. In order to prove
that

∨
v(l)=true l is an invariant, assume that for some global

state (l1, . . . , ln), there exists li such that v(li) = true. If
from li there is an interaction a such that there exists pi ∈ a

and li
pi−→ l ′i , then li •a is not empty. For every set of tran-

sitions X ∈ li •a , there exists τ ∈ X such that l ′j = τ • and
v(l ′j) = true by Definition 15. So any successor state of
(l1, . . . , ln) by an interaction a satisfies

∨
v(l)=true l. ��

The above theoremprovides a basis for computing interac-
tion invariants of γ (B) directly from the solutions of |γ (B)|.
In the rest of the paper, we will also use the term BBC-
invariant to refer to the invariant that corresponds to a single
solution of the BBC.

123

www.manaraa.com

438 S. Bensalem et al.

From Theorem 2, interaction invariants are derived as dis-
junction of positive variables of solutions of |γ (B)|. This sug-
gests that all the literals with negations should be removed.
In some cases, we may keep some negations. The following
definition explains how to partially remove negations.

Definition 16 (positive mapping) Consider two sets of vari-
ables L and L ′ such that L ′ ⊆ L , and a Boolean formula
φ = (

∧
li∈L li ∧ ∧

l j∈L ′ l̄ j ∧ ∧
lk∈L−L ′ l̄k) on L . We define

the Positive Mapping operation of φ, denoted by φ p(L ′), by
deleting all the negative variables of φ that do not belong to
L ′ as follows:
φ p(L ′) = ∧

li∈L
li ∧ ∧

l j∈L ′
l̄ j .

If L ′ is empty, then the positive mapping will remove all
the negations from a DNF formula φ, denoted by φ p. Notice
that (

∧
i∈I l̄i)p = f alse.

Remark 2 Positive mapping is distributive over disjunction.
That is, given two Boolean formulas φ1 and φ2 over L , and
L ′ ⊆ L , we have:

(φ1 ∨ φ2)
p(L ′) = φ

p(L ′)
1 ∨ φ

p(L ′)
2 .

Example 10 Given a Boolean formula φ = l1l2l̄3 + l1l̄2l3
over L = {l1, l2, l3} and a subset of variables L ′ = {l1, l2},
we have positive mapping φ p(L ′) = l1l2 + l1l̄2l3 and φ p =
l1l2 + l1l3.

Consider a Boolean formula φL over a set of variables
L = {l1, . . . , ln}. We denote the dual operation on φL by
d(φL). d(φL) = φL̄ , where φL̄ is a Boolean formula obtained
from φL by replacing, for each variable li ∈ L , its positive
form li (respectively its negative form l̄i) by its negative form
l̄i (respectively its positive form li).

Example 11 The dual of the Boolean formula φ = l1l̄2 +
l2l̄3+ l1l3 over L = {l1, l2, l3} is given by d(φ) = l1l̄2 + l1l̄3.

The following theorem allows to compute an interaction
invariant that combines all the solutions of a BBC. As we
have seen, BBCs can be rewritten as a disjunction of mono-
mials.Bydualizing amonomial, one canobtain an interaction
invariant. If one wants the strongest invariant that takes all
the solution into account, one simply has to take the dual of
the BBC.

Theorem 3 For any connector γ applied to a tuple of n com-
ponents B = (B1, . . . , Bn), a global interaction invariant
of γ (B) can be obtained as the dual of |γ (B)|p, denoted by
d(|γ (B)|p).
Proof |γ (B)| can be rewritten in the disjunctive normal
form, that is |γ (B)| = ∨

i∈I mi , where I is the set of
indexes of monomials in |γ (B)| and mi is of the form

mi = ∧
j∈I l j ∧ ∧

k∈I∧k �= j lk . According to Theorem 2, for

any solution mi of |γ (B)|, we have d(mp
i) = ∨

j∈I l j is an
invariant of γ (B). Hence d(|γ (B)|p) = d((

∨
i∈I mi)

p) =
d(

∨
i∈I m

p
i) = ∧

d(mp
i) is the global interaction invariant

of γ (B). ��
Example 12 We consider the components, connectors and
BBCs introduced in Example 9. The positive mapping
removes variables with negations from |γ (B)|. We obtain

d(|γ (B)|p) = (l0 + l1 + l2)(l0 + l2 + l4)(l3 + l4)(l5 + l6)

(l0 + l1 + l6)(l0 + l4 + l6)(l1 + l3)(l2 + l5)

which is the global interaction invariant of γ (B).

4.2 Fixpoint-based computation of interaction invariants

Interaction invariants can also be iteratively computed by
using a fixpoint-based technique. BBC can be regarded
as a set of implications l ⇒ σl(γ), where σl(γ) =∧

X∈l•γ
(∨

τ∈X∧l ′=τ • l ′
)
. Instead of unfolding the implica-

tion, this set can be equivalently written as a set of equations
Δγ = {l = l ∧ σl(γ)}. We call l = l ∧ σl(γ) as BBC-
equations in the rest of the paper. We also use σl instead of
σl(γ) and Δ instead of Δγ when we consider all the interac-
tions in γ .

Example 13 Consider again Example 9. The BBC-equations
in Δ for the locations of each component are:

Δ = {l0 = l0(l1 + l4)(l2 + l6), l1 = l1(l0 + l3), l2 = l2(l0 + l5),

l3 = l3(l1 + l4), l4 = l4(l0 + l3), l5 = l5(l2 + l6), l6 = l6(l0 + l5)}

We now show how to compute interaction invariants by
using BBC-equations. The intuition is as follows. For the
equation l = l ∧ σl , if l ′ occurs in σl and l ′ ∧ σl ′ is the
BBC-equation of l ′, then we can apply l ′ ∧ σl ′ to replace l ′
in l ∧ σl and obtain an equation that represents the locations
that can be reached from l via l ′. If we repeat the same opera-
tion to all the locations until no more reachable locations are
added, then every monomial in the right side of the obtained
equation for a given location is a set of reachable locations
through interactions started from this location. In this sub-
section, we present a method to compute the solutions for
BBC-equations and the way to obtain interaction invariants
from these solutions.

We extend Δ to formulas in Bool[L], that is, for a for-
mula φ over L , Δ(φ) = φ[l �→ Δ(l)] where l �→ Δ(l) is
the substitution of l by Δ(l). Then we can apply the fixpoint
computation φk+1 = Δ(φk), starting from φ0 = l for every
location l ∈ L . When φk+1 = φk , the computation termi-
nates and φk is the solution (fixpoint) of l with respect to the
BBC-equations Δ.

The termination of the fixpoint computation comes from
the following reasons. First, L is a finite set and the number

123

www.manaraa.com

Component-based verification using incremental design and invariants 439

of formula over a finite domain Bool[L] is finite. Second, we
have Δ(φ) ⇒ φ, therefore, φ j ⇒ φi with j > i . Assume
by contradiction that there exist φi and φ j such that φi = φ j

and j > i +1. Then we have φi = φi+1 = · · · = φ j and the
iteration stops at φi .

For a set of locations, we can compute their solutions
simultaneously. Since the method is based on the least fix-
point computation by considering BBC-equations of all the
locations, we call it location-based fixpoint (LFP). We use
L
k to denote the set {lk}l∈L after k iterations.

Example 14 (LFP computation) To illustrate the applica-
tion of the fixpoint computation in computing the solutions
of every location with respect to the BBC-equations, we con-
tinue Example 13 and consider again the components given
in Fig. 2. In the following table, a column corresponds to an
iteration. When L

3 = L
2, the iteration stops.

L L
1 = Δ(L) L

2 = Δ(L1) L
3 = Δ(L2)

l0 l0l1l2 + l0l2l4 l0l1l2 + l0l2l4 l0l1l2 + l0l2l4

+ l0l4l6 + l0l1l6 + l0l4l6 + l0l1l6 + l0l4l6 + l0l1l6

l1 l0l1 + l1l3 l0l1l2 + l1l3 + l0l1l6 l0l1l2 + l1l3 + l0l1l6

l2 l0l2 + l2l5 l0l1l2 + l2l5 + l0l2l4 l0l1l2 + l2l5 + l0l2l4

l3 l1l3 + l3l4 l1l3 + l3l4 l1l3 + l3l4

l4 l0l4 + l3l4 l0l2l4 + l3l4 + l0l4l6 l0l2l4 + l3l4 + l0l4l6

l5 l5l6 + l2l5 l5l6 + l2l5 l5l6 + l2l5

l6 l5l6 + l0l6 l0l4l6 + l5l6 + l0l1l6 l0l4l6 + l5l6 + l0l1l6

Observe that the result of the above fixpoint computa-
tion differs from the set of reachable states of the compos-
ite component. The set of reachable states is in fact more
accurate than our computation, but this precision has a cost
when working with complex systems. Reachable states com-
putation takes interaction as a global transition and com-
putes exactly the successor states from each global state that
enables the synchronization. However, in our method, what
we need is only one location that can be reached by an inter-
action.

Proposition 5 Let γ be a connector over B with a set of
locations L and let lk = ∨

i∈I mi be the solution of l ∈ L
with respect to BBC-equations Δ of γ (B) where I is the set
of indexes of monomials in lk . Then mi gives a minimal set of
reachable locations through a sequence of interactions of γ
via location l, where mi is a monomial with the conjunction
of locations.

Proof Wefirst show thatmi gives a set of reachable locations
from l. Indeed,mi contains at least onemonomial inσl ,which
enumerates one reachable location for every interaction from
l. If σl contains some l ′, thenmi also contains those locations
in σl ′ . So mi is a set of reachable locations from l.

Wenowshow thatmi isminimal.Assumeby contradiction
that mi is not minimal, i.e., that there exists m j such that
mi ⇒ m j and m j is a solution of l j . Since both mi and
m j are conjunctions of locations, we have mi ∨ m j = m j .
Therefore, the iteration stops when m j is generated and mi

is not a solution of l j generated by the method. This is a
contradiction. ��

Theorem 4 Let γ be a connector over B with a set of loca-
tions L and let lk = ∨

i∈I mi be the solution of l ∈ L with
respect to BBC-equations Δ of γ (B) where I is the set of
indexes of monomials in lk . Then d(lk) = ∧

i∈I d(m)i is an
inductive invariant, and

∧
l∈L d(lk) is an inductive invariant

of γ (B).

Proof Considerm ∈ lk . According to Proposition 5,m gives
aminimal set of reachable locations through interactions of γ
via l. Assume also that for some global state l = (l1, . . . , ln),
we have li ∈ m. This means that d(m) is true. If from li there
exists an interaction a ∈ γ such that li ∈ •a, then there exists
l ′i ∈ a• such that l ′i belongs to m and d(m) is still true. So
any successor state of l by an interaction a satisfies d(m) and
d(m) is an invariant of γ (B).

Since the conjunction of invariants is still an invariant,
d(lk) = ∧

i∈I d(m)i is an invariant of γ (B), and
∧

l∈L d(lk)
is also an invariant of γ (B). ��

This theorem allows us to compute the global interaction
invariants of γ (B), which is the conjunction of the invariants
obtained by taking the dual of each solution of the equations.

Example 15 According to Theorem 4, the dual over the set
of solutions of a BBC-equation is an invariant. In Example
14, we have

d(l20)= (l0+l1+l2)(l0 + l2 + l4)(l0 + l4 + l6)(l0 + l1 + l6)

is an invariant of the composite component in Fig. 2, and

6∧

i=0

d(l2i) = (l0 + l1 + l2)(l0 + l2 + l4)(l1 + l3)(l2 + l5)

(l0 + l4 + l6)(l0 + l1 + l6)(l3 + l4)(l5 + l6)

is also an invariant.

Finally, instead of computing solutions from different
locations simultaneously, we can put the locations together
by disjunction and compute their fixpoint.

Remark 3 Let γ be a connector over B with a set of locations
L , Δ be a set of BBC-equations over L , and φk be the set of
solutions of φ = ∨

l∈L l with respect to the BBC-equations
Δ of γ (B). The interaction invariant of γ (B) can be obtained
as the dual of φk . We call φk the set of solutions for Δ.

123

www.manaraa.com

440 S. Bensalem et al.

Example 16 Consider again the example given in Fig. 2,with
γ = p1 p3⊕q1 q3⊕ p2 p4⊕q2 q4.We have the initialization
φ0 = l0 + l1 + l2 + l3 + l4 + l5 + l6, and Δ is the same as
that in Example 14. According to Theorem 3,

φ1 = Δ(φ0) = l0l1 + l1l3 + l0l2

+l2l5 + l3l4 + l0l4 + l5l6 + l0l6.

φ2 = Δ(φ1) = l0l1l2 + l0l2l4 + l1l3 + l2l5 + l0l4l6

+l0l1l6 + l3l4 + l5l6.

Since φ3 = φ2, the iteration stops and, according to our
definition, φ2 is the set of solutions for the BBC-equations
of γ (B). We have

d(φ2) = (l0 + l1 + l2)(l0 + l2 + l4)(l1 + l3)(l2 + l5)

(l0 + l4 + l6)(l0 + l1 + l6)(l3 + l4)(l5 + l6)

is an invariant of γ (B).

4.3 Incremental computation of interaction invariants based
on positive mapping method

We showhow to reuse already computed invariantswhen new
increments are added to a component. The intuition behind is
thatwe regard the systemas a composition of subsystems.We
first give a decomposition form for BBC and then show how
this decomposition can be used to save computation time.

Lemma 3 Consider two connectors γ1, γ2 over B. We have

|(γ1 ⊕ γ2)(B)| = |γ1(B)| ∧ |γ2(B)|.
Proof ByDefinition15,wehave |(γ1⊕γ2)(B)| = ∧

a∈(γ1⊕γ2)|a(B)| = ∧
a∈γ1

|a(B)| ∧ ∧
a∈γ2

|a(B)| = |γ1(B)| ∧
|γ2(B)|. ��
Proposition 6 Let γ be a connector over B. The Boolean
behavioral constraint for the composite component obtained
by superpositionof n increments {δi }1≤i≤n ofγ canbewritten
as
∣
∣
∣
∣
∣

(
n∑

i=1

δi

)

γ (B)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

⎛

⎝γ

(

n∑

i=1

δi

) f
⎞

⎠ (B)

∣
∣
∣
∣
∣
∣
∧

n∧

i=1

|δi (B)|.

(3)

Proof By (1), the union of γ
 (
∑n

i=1 δi)
f and

∑n
i=1 δi

is the result of the superposition of a set of increments
{δi }1≤i≤n over γ . Therefore, by applying Lemma 3, we have
|(∑n

i=1 δi)γ (B)| = |(γ
 (
∑n

i=1 δi)
f ⊕ ∑n

i=1 δi)(B)| =
|(γ
 (

∑n
i=1 δi)

f)(B)| ∧∧n
i=1 |δi (B)|. ��

Proposition 6 provides a way to decompose the computa-
tion of BBCs with respect to increments. The decomposition
is based on the fact that different increments describe the
interactions between different components. To simplify the
notation, γ
 (

∑n
i=1 δi)

f is represented by δ0.

We now show how to exploit incremental design to speed
up the positive mapping method presented in Sect. 4.1.

The positive mapping method considers the BBCs from
interactions. It is natural to apply Proposition 6 to reuse
invariants computed from the increments for the whole con-
nector.

First, we switch to the problem of computing invari-
ants while taking incremental design into account. Different
incrementsmay interfere over same components or locations.
Therefore,we should consider their relations and the effect on
invariants when they are superposed. We propose the follow-
ing definition that will help in the process of reusing existing
invariants.

Definition 17 (common location variables Lc) The set of
common location variables of a set of n connectors {γi }1≤i≤n

is defined by:

Lc =
⋃

i, j∈[1,n]∧i �= j

support (γi) ∩ support (γ j),

where support (γ) = ⋃
a∈γ

•a ∪ a•, the set of locations
involved in some interaction a of γ .

Assume that an invariant has already been computed for
a set of interactions (we use Φδ to denote the BBC-invariant
of |δ(B)|). This information is exploited to improve the effi-
ciency. According to (1), the superposition of a set of incre-
ments {δi }1≤i≤n over a connector γ can be regarded as sep-
arately applying increments over their constituents. Interac-
tion invariants can be computed fromBBC-invariants by rea-
soning the relation between location variables involved in
BBC-invariants and common location variables. We propose
the following proposition, which builds on (3).

Proposition 7 Consider a composite component γ (B). Let
assume a set of n increments {δi }1≤i≤n over γ (B). Let
δ0 = γ
 (

∑n
i=1 δi)

f . Let Lc be the set of common loca-
tion variables between {δ0, δ1, . . . , δn}. For a formula φ, let
Lφ denote the set of location variables occurring in φ. Then:

– every BBC-invariant φi computed for |δi (B)| such that
Lφi ∩Lc = ∅, that is φi does not use any common location
variables, is an interaction invariant of (

∑n
i=1 δi)γ (B).

– for every set of BBC-invariants φi1, . . . , φir computed,
respectively, forBBC-solutionsmi1 , . . . ,mir from |δi1(B)|,
. . . , |δir (B)| such that:

(1) ∀ j ∈ [1, r]. Lφi j
∩ Lc �= ∅, that is each invariant φi j

uses some common location variables,

(2)
(∧r

j=1mi j

)
�= f alse, that is

∧r
j=1mi j corresponds

to a feasible global BBC-solution,
(3) it is maximal, i.e., it cannot be extended by some other

BBC-invariant φir+1 such that (1) and (2) still hold,

123

www.manaraa.com

Component-based verification using incremental design and invariants 441

∨r
j=1 φi j is an interaction invariant of (

∑n
i=1 δi)γ (B).

Proof For every BBC |δi (B)|, there exists a BBC-solution
mi0 without any variables in the positive form, which has
no BBC-invariant corresponding to. For any φik , k ∈ Ii ,
there exists mik such that φik = d(mik). According to
Proposition 6, the BBC-solution of |(∑n

i=1 δi)γ (B)| is
∧n

i=0
∨

k∈Ii mik = ∨
k∈{I j }nj=0

∧n
j=0 mik where Ii is the set

of indexes of BBC-solutions to |δi (B)|.

• If an mik does not contain any common location vari-
ables, then there exists a BBC-solution m j0 containing
only negations of |δ j (B)| such that:

i �= j ∧
⎛

⎝
n∧

j=0∧ j �=i

mik ∧ m j0

⎞

⎠

p

= mp
ik
.

This means that φik is one of the BBC-invariants of
|(∑n

i=1 δi)γ (B)|.
• If there is a maximal set {mi1, . . . ,mir },∀ j ∈ [1, r] ∧
i j ∈ Ii j such that all of them contain common location
variables, and

∧r
j=1mi j = f alse, then this set is not a

solution of |(∑n
i=1 δi)γ (B)|. If ∧r

j=1mi j �= f alse, we
have:

d

⎛

⎝

⎛

⎝
r∧

j=1

mi j

⎞

⎠

p⎞

⎠ = d

⎛

⎝
r∧

j=1

d(φi j)

⎞

⎠ =
r∨

j=1

φi j .

��
The proposition simply says that the BBC-invariants that
do not share common variables are also the invariants of
(
∑n

i=1 δi)γ (B). Other BBC-invariants that contain common
variables need to be combined (by disjunction) together to
form a global invariant. This is to guarantee that common
location variables will not change the satisfiability of the for-
mula.

Observe that each non-commonvariable occurs only in the
solutions of one BBC. This allows deleting the non-common
variables with negations separately by using the positive
mapping of common variables in every BBC-solutions,
which reduces complexity of computation significantly.

Example 17 (incremental invariant computation) In the
example of Fig. 2, let γ = ∑4

i=1 pi ⊕ qi . Two increments
over γ are δ1 = p1 p3 ⊕ q1 q3 and δ2 = p2 p4 ⊕ q2 q4. The
new connector obtained by applying δ1 and δ2 to γ is given
by (δ1 ⊕ δ2)γ = p1 p3 ⊕ q1 q3 ⊕ p2 p4 ⊕ q2 q4. The BBC
|δ1(B)| and |δ2(B)| are, respectively, given by:

|δ1(B)| = (l0 ⇒ l1 + l4)(l1 ⇒ l0 + l3)(l3 ⇒ l1 + l4)

(l4 ⇒ l0 + l3),

|δ2(B)| = (l0 ⇒ l2 + l6)(l2 ⇒ l0 + l5)(l5 ⇒ l2 + l6)

(l6 ⇒ l0 + l5).

Since γ
 (δ1 ⊕ δ2)
f = ∅, we have |(δ1 ⊕ δ2)γ (B)| =

|δ1(B)| ∧ |δ2(B)|.
We show how to compute the invariants from BBC-

invariants of the increments. By Definition 17, we obtain
that Lc = {l0}. We have the BBC-solutions for |δ1(B)| and
|δ2(B)| are:
|δ1(B)| = l̄0l̄1l̄3l̄4 + l0l1 + l1l3 + l0l4 + l3l4,

|δ2(B)| = l̄0l̄2l̄5l̄6 + l0l2 + l2l5 + l0l6 + l5l6.

Their corresponding BBC-invariants are:

Φδ1 = (l0 + l1)(l0 + l4)(l1 + l3)(l3 + l4),

Φδ2 = (l0 + l2)(l0 + l6)(l2 + l5)(l5 + l6).

Since (δ1 ⊕ δ2)γ (B) = ((γ
 (δ1 ⊕ δ2)
f)⊕ δ1 ⊕ δ2)(B) and

γ
 (δ1 ⊕ δ2)
f = ∅, we have Φ(δ1⊕δ2)γ (B) = Φ(δ1⊕δ2)(B).

Among the BBC-invariants, l1 + l3, l3 + l4, l2 + l5, and
l5+l6 do not contain any common location variables, so they
will remain in the global computation. BBC-invariants l0 +
l1, l0+l4, l0+l2 and l0+l6 contain l0 as the common location
variable, and the conjunction between every monomial from
two groups of solutions is not false. So the final result is:

(l0 + l1 + l2)(l0 + l4 + l6)(l0 + l1 + l6)(l0 + l2 + l4)

(l1 + l3)(l3 + l4)(l2 + l5)(l5 + l6).

4.4 Incremental computation of interaction invariants based
on fixpoint method

According toProposition1, the set of interactions (
∑n

i=1 δi)γ

can be obtained from the sets of interactions γ
 (
∑n

i=1 δi)
f

and {δi }ni=1. From that, we propose a method which allows
computing fixpoint of (

∑n
i=1 δi)γ (B) from the fixpoints

obtained from γ
 (
∑n

i=1 δi)
f and {δi }ni=1 over B.

First, for a set of increments {δi }ni=1 over a component
γ (B), the following proposition allows computing the global
BBC-equation of (

∑n
i=1 δi)γ (B) from those of δi (B) for

i ∈ [0, n].
Proposition 8 Consider a composite component B with a set
of locations L. Let γ be a connector over B and let {δi }1≤i≤n

be a set of n increments over γ . Assume that δ0 = γ

(n

i=1δi)
f , let Lδ = ⋃n

i=0
•δi , and let Δδi be the set of BBC-

equation of δi (B) for i ∈ [0, n]. Δ(l), BBC-equation of
l ∈ L for (

∑n
i=1 δi)γ (B) is defined by the following form:

Δ(l) =
{∧n

i=0 Δδi (l) if l ∈ Lδ

l otherwise
(4)

Proof Δ(l) = l ∧ σl((
∑n

i=1 δi)γ). According to Proposi-
tion 1, we have l•

(n
i=1δi)γ

= ⋃n
i=0 l

•
δi
. Therefore, we have

Δ(l) = ∧n
i=0(l ∧ σl(δi)) = ∧n

i=0 Δδi (l). ��

123

www.manaraa.com

442 S. Bensalem et al.

The above proposition states that BBC-equations of loca-
tions for a superposition of increments can be obtained by
taking the conjunction of the corresponding equation for each
increment.

We now introduce the incremental computation of solu-
tions that computes the invariant for a composite component
and a set of increments. The method, which is called Incre-
mental Location-based Fixpoint (I LFP), assumes that an
invariant has already been computed for a set of interactions.
This information is exploited to improve the efficiency. The
idea is as follows. According to (1), the superposition of a set
of increments {δi }1≤i≤n over a connectorγ can be regarded as
separately applying increments over theirs constituents. The
incremental computation of solutions is based on the solu-
tions of these increments over their constituents δi (B) and
the solutions for the BBC-equations of (γ
 (n

i=1δi)
f)(B).

We suggest the following proposition.

Proposition 9 (incremental LFP computation) Consider a
composite component B and a set of locations L. Let γ be a
connector over B and assume a set of increments {δi }1≤i≤n

over γ (B). Let δ0 = γ
(
∑n

i=1 δi)
f , Lδ = ⋃n

i=0
•δi , andφi

be the solution for BBC-equations of δi (B), where i ∈ [0, n].
The solution for the BBC-equationsΔ of (

∑n
i=1 δi)γ (B) can

be computed by following the iteration:

φ0 =
n∨

i=0

φi ∨
∨

l∈L−Lδ

l,

φk+1 = Δ(φk).

Proof Given two sets of monomials S1, S2, we denote S1 �
S2 if for all s1 ∈ S1 there exists s2 ∈ S2 such that s2 implies
s1.

By Proposition 8, for ∀i ∈ [0, n], we have Δδi (l) � Δ

whereΔ is the set of BBC-equations for (
∑n

i=1 δi)γ (B). Let
lki and lk be, respectively, the fixpoints obtained from l by
Δδi and Δ, we have l � lki � lk , therefore φ � φki � φk .
By starting from

∨
l∈L l and

∨n
i=0 Δi ∨ ∨

l∈L−Lδ
l, we have

the same least fixpoint over Δ. ��
Proposition 9 shows that the invariants computed for the
increments (the δi) can be reused in other computation where
more increments are added. Hence, this invariant can be
maintained for further incremental constructions and veri-
fications, which should improve the efficiency of the veri-
fication process. Observe that in the case that l /∈ •γ , no
outgoing interaction from l will be considered, and it can be
regarded as a deadlock location in γ (B). As it will not in •δi
either, we need to add such locations when we compute the
global solution.

We conclude the section with an example.

Example 18 (incremental LFP computation) Consider the
components given in Fig. 2 and let γ = ∑4

i=1 pi ⊕ qi . Con-
sider also two increments δ1 = p1 p3 ⊕ q1 q3 and δ2 =

p2 p4⊕q2 q4 that are defined over γ . Since γ
(δ1⊕δ2)
f =

∅, we have δ0 = ∅. The set of BBC-equations Δδ1 for δ1(B)

can thus be defined as follows:

Δδ1(l0) = l0(l1 + l4),Δδ1(l1) = l1(l0 + l3),

Δδ1(l3) = l3(l1 + l4), Δδ1(l4) = l4(l0 + l3).

The set of BBC-equations Δδ2 for δ2(B) is as follows:

Δδ2(l0) = l0(l2 + l6),Δδ2(l2) = l2(l0 + l5),

Δδ2(l5) = l5(l2 + l6), Δδ2(l6) = l6(l0 + l5).

The solutions for BBC-equations are

φ1 = l0l1 + l0l4 + l1l3 + l3l4,

φ2 = l0l2 + l0l6 + l2l5 + l5l6.

For (δ1 + δ2)γ (B), we have L = •δ1 ∪ •δ2, so
φ = φ1 + φ2 = (l0l1 + l0l4 + l1l3 + l3l4)

+(l0l2 + l0l6 + l2l5 + l5l6).

By applying Δ of (δ1 ⊕ δ2)γ (B) over φ, we obtain that

φ1 = Δ(φ) = l0l1l2 + l0l2l4 + l0l4l6 + l0l1l6 + l1l3

+l3l4 + l2l5 + l5l6.

Then φ2 = φ1 = l0l1l2 + l0l2l4 + l0l4l6 + l0l1l6 + l1l3 +
l2l5 + l3l4 + l5l6, so φ1 is the solution for the BBC-equations
of (δ1 ⊕ δ2)γ (B).

5 Implementation

All the techniques presented earlier have been implemented
in the D-Finder toolset [17]. As shown in Fig. 5, D-Finder
takes as inputs programs written in BIP language. Accord-
ing to the behaviors of local components and interactions
between different components, it computes both component
and interaction invariants using the enumerative techniques
presented in [16,18] or symbolic techniques presented in this
paper. Both the constraints and the computations can bemade
symbolic by representating sets of locations by BDDs using
the CUDD package [69].

In the previous sections, we have focused on abstract
finite-state systems without data. The presented techniques
can be easily generalized to systems with arbitrary data
by applying abstraction techniques (see for instance [18]).
Briefly, for systems with data, we apply the following three
steps:

1. Wecompute an abstractionof the systemS = 〈γ (B1, . . . ,

Bn), I ni t〉 in the following manner:

(a) for each atomic component Bi with data of the system
S, an abstraction is computed to obtain a correspond-
ing abstract atomic component Bα

i without data. This
can be done by following the approach introduced in
[18].

123

www.manaraa.com

Component-based verification using incremental design and invariants 443

Fig. 5 D-Finder tool

(b) an abstraction γ α of connector γ . γ α is obtained by
generating for each interaction in γ a corresponding
abstract interaction.

(c) abstract initial condition I ni tα is obtained from I ni t
as the set of all the abstraction locations such that their
corresponding predicates in concrete atomic compo-
nents satisfy I ni t .

The above method does not change the structure of the
system, which allows to switch from the abstract to the
concrete domain in an easy way. See [18] for details.

2. The techniques for computing interaction invariants of
abstract finite-state systems are applied to the abstract
systems Sα . The result is a set of abstract interaction
invariants I I α of Sα .

3. Finally, the interaction invariant I I for the concrete sys-
tem S is obtained by concretizing the abstract interaction
invariant I I α .

To check deadlock-freedom, we have to show that ¬DI S
is an invariant. To check that¬DI S is an invariant,D-Finder
computes the conjunction of component invariants C I with
interaction invariant I I . Then, checks thatC I∧I I ⇒ ¬DI S
or equivalently that C I ∧ I I ∧ DI S = f alse. For finite-
state systems, all these operations can be performed by using
BDDs. However, for infinite systems, formulas describe rela-
tions between possibly unbounded data. D-Finder needs to
concretize predicates back from abstract interaction invari-
ants by recovering the previous formula from BDDs. Then
checking C I ∧ I I ∧ DI S = f alse is converted to the sat-
isfiability checking of the formula for C I ∧ I I ∧ DI S, by
using the Yices [44] and Omega [70] toolsets.

We have implemented the presented techniques by using
again BDD-based representations. It is easy to see that all
the steps of the methods presented earlier can be expressed
as Boolean operations onBDDs. The readerwho is interested
in implementation details is redirected to [64].

For incremental computation of invariants, the way incre-
ments are defined may totally change performance. Unfortu-
nately, we could not find rules to determine optimal decom-
positions.

6 Experimentation

In this section, we present experimental results.We start with
a subsection providing benchmarks for classical examples.
We then present two non-trivial case studies that are the
Utopar Transportation System and the DALA autonomous
robot. All our case studies and the D-Finder toolset can be
downloaded from: http://www-verimag.imag.fr/dfinder.

6.1 Examples

We have compared the performance of the four methods on
examples. All our experiments have been conducted with a
2.4GHz Duo CPU Mac laptop with 2GB of RAM.

We have checked deadlock-freedom of the following
examples: Gas Station [52], Smoker [65], Automatic Teller
Machine (ATM) [31], and Producer/Consumer. For Gas Sta-
tion, we assume that each pump has 10 customers. Hence,
if there are 50 pumps in Gas Station, then we have 500 cus-
tomers and the total number of components including the
operator is thus 551. In ATM example, each ATM machine
is associated with one user. Therefore, for 10 machines, the

123

http://www-verimag.imag.fr/dfinder

www.manaraa.com

444 S. Bensalem et al.

total number of components is 22 (including the two com-
ponents that describe the Bank). Gas Station and Smoker are
systems without data, while ATM and Producer/Consumer
have integer variables. For the latter,D-Finderfirst computes
finite abstraction for each atomic component following the
method presented in [18].

Table 1 collects results on benchmarks with acyclic inter-
action topology in an open-chain structure. Computation
times and memory usages for the application of the four
methods on these examples are given in Table 1. In the
legend, scale is the “size” of examples; location denotes
the total number of control locations; interaction is for the
total number of interactions. Computation times are given
in minutes. Timeout, i.e., “-” is one hour. Memory usage is
given inmegabytes (MB). Incremental techniques are always
faster than global ones.

We can observe thatGFP is always faster thanGPM. This
is because the size of the components in these four examples
is small, and the interactions do not heavily depend on each
other. This allows to compute the fixpoint in a few iterations.
Furthermore, positive mapping requires to first compute a
BDD for the whole set of BBCs (hence considering all the
locations), from which the positive variables are extracted
by applying, for each location, a cofactor function to the
BDD representing all BBCs. Computing the cofactor is often
fast, but the repeated application of this function may exceed
the time needed for few steps of fixpoint computation. For
the incremental verification, IPM outperforms IFP for all
examples, except for Gas Station. The reasons are that (1)
incremental design allows to reduce the size of the BDD and
thus reduce the overload caused by positive mapping and (2)
IFP still has to apply the BBC-equations of the entire system.
This also explains why IFP consumes more memory than
IPM.

In Table 2, we provide results on checking deadlock-
freedom for Dining Philosophers, to compare performance
with the enumerative method in D-Finder, and model
checker NuSMV.8 In the table, NuSMV stands for results
fromNuSMV, and Enum stands for results fromenumerative
methods in [16,18]. It is obvious that both time and mem-
ory consumption of NuSMV are much higher than those of
D-Finder.

Contrary to the other examples, Dining Philosophers has a
cyclic topology, which cannot be efficiently managed by IFP
(this is the only case for which GPM was faster than IFP).
The reason is that for cyclic topologies, one often has to
compute interaction invariants with constraints involving all
the components in a cycle at the same time. This experiment
is the only case that the global enumerative verification is
better than the global symbolic methods. The reason is that

8 We admit that the comparison is unfair for NuSMV. The reason being
that D-Finder does not explore the reachable state space.

the number of interaction invariants of this example does not
increase exponentially in the size of the systems.

In Fig. 6, we can observe the evolution of the size of
the BDDs created for Gas Station and Dining Philosophers
from D-Finder and NuSMV. Figure 6a shows for Gas Sta-
tion that GPM consumes more memory than GFP. This also
gives another justification for the good performances ofGFP.
Without storing all BBC-equations, IPM needs less memory
than IFP. However, the memory occupation for IFP is not
excessive. Figure 6b shows for Dining Philosophers that IPM
performs better than the other techniques. In the two cases,
however, the size of BDDs in NuSMV increases rapidly to
explore the reachable states.

6.2 Case study on Utopar transportation system

We now consider the Utopar9 automated transportation sys-
tem. This is one of the two main case studies of the European
project COMBEST [37]. Utopar can be modeled as the com-
position of three types of components: (1) autonomous vehi-
cles, called U-cars (UC), (2) a centralized automatic control
system, and (3) calling units (CU). U-cars are equipped with
a local controller, responsible for handling the U-car sensors
and performing various routing and driving computations
depending on users’ requests. We have analyzed a simpli-
fied version of Utopar by abstracting from data exchanged
between components. In this version, each U-car is modeled
by a component having 7 control locations and 6 integer vari-
ables. The automatic control system has 3 control locations
and 2 integer variables. Calling units have 2 control loca-
tions and no variables. We have successfully proven that the
system is deadlock-free. In Table 3, one can see that IFP is
always faster than IPM for this case study.

6.3 Case study on robotic systems

We have also applied our method to a more complex case
study that directly comes from an industrial applications. We
have been capable of checking safety and deadlock-freedom
properties on eight modules of the functional level of the
DALA autonomous robot [21]. We only briefly present our
results. The reader is redirected to [20] for more details. In
this example, we encoded both the modules and their com-
munication primitive inBIP, then we checked the absence of
deadlock. Finally, we used the BIP tool to generate correct C
Code (more than 500,000 lines) to coordinate the modules.
Using the BIP workflow, one can claim that this C code does
not generate deadlock when coordinating the modules.

9 A succinct description of the Utopar case study can be found at http://
www.combest.eu/home/?link=Application2.

123

http://www.combest.eu/home/?link=Application2
http://www.combest.eu/home/?link=Application2

www.manaraa.com

Component-based verification using incremental design and invariants 445

Table 1 Comparison for acyclic topologies

Component information Time (min) Memory (MB)

Scale Location Interaction GFP GPM IFP IPM GFP GPM IFP IPM

Gas Station

50 pumps 2,152 2,000 0:17 0:50 0:17 0:49 53 48 53 47

100 pumps 4,302 4,000 0:38 2:58 0:52 1:51 65 76 52 47

200 pumps 8,602 8,000 1:34 11:34 1:55 2:26 107 135 65 47

400 pumps 17,202 16,000 5:01 47:38 3:51 5:43 215 270 93 76

500 pumps 21,502 20,000 7:45 – 4:43 7:21 261 – 101 86

600 pumps 25,802 24,000 11:21 – 5:53 9:05 316 – 115 97

700 pumps 30,102 28,000 16:04 – 7:14 11:44 350 – 138 107

Smoker

300 smokers 907 903 0:06 0:07 0:07 0:07 32 44 11 7

600 smokers 1,807 1,803 0:18 0:13 0:14 0:13 42 46 26 8

1,500 smokers 4,507 4503 0:59 1:38 0:44 0:34 56 65 54 18

3,000 smokers 9,007 9,003 3:43 6:21 1:57 1:14 81 113 86 28

6,000 smokers 18,007 18,003 14:45 27:03 5:57 3:24 248 222 172 55

7,500 smokers 22,507 22,503 22:44 41:38 8:29 4:51 343 270 209 60

9,000 smokers 27,007 27,003 32:52 – 11:36 6:34 468 319 247 96

ATM

50 machines 1,104 902 3:17 10:49 2:20 1:23 148 81 86 22

100 machines 2,204 1,802 6:50 43:00 6:00 1:57 284 142 271 44

250 machines 5,504 4,002 17:56 – 17:16 4:46 662 – 670 65

350 machines 7,704 6,302 39:35 – 27:54 8:18 937 – 938 77

600 machines 13,204 10,802 – – – 24:14 – – − 119

Producer/consumer

2,000 consumers 4,004 4,003 0:27 0:27 0:33 0:31 54 57 16 11

4,000 consumers 8,004 8,003 1:19 1:27 1:18 1:05 110 90 28 20

6,000 consumers 12,004 12,003 2:40 3:01 2:32 2:03 193 126 37 31

8,000 consumers 16,004 16,003 5:20 5:35 4:22 2:33 256 164 40 35

10,000 consumers 20,004 20,003 8:40 8:44 6:12 3:15 369 218 66 56

12,000 consumers 24,004 24,003 11:02 12:06 8:37 5:38 460 257 75 66

Table 2 Comparison between different methods on Dining Philosophers

Component information Time (min) Memory (MB)

Scale Location Interaction NuSMV Enum GFP GPM IFP IPM NuSMV Enum GFP GPM IFP IPM

100 philos 600 500 1:32 0:06 22:41 0:13 0:19 0:04 533 34 75 46 32 10

500 philos 3,000 2,500 – 1:51 – 4:01 9:18 0:34 – 55 – 61 60 29

1,000 philos 6,000 5,000 – 7:08 – 17:09 – 2:04 – 90 – 105 – 60

1,500 philos 9,000 7,500 – 19:30 – 39:40 – 3:09 – 126 – 148 – 74

2,000 philos 12,000 10,000 – 28:44 – – – 4:14 – 163 – – – 96

4,000 philos 24,000 20,000 – – – – – 8:37 – – – – – 192

6,000 philos 36,000 30,000 – – – – – 14:26 – – – – – 382

9,000 philos 54,000 45,000 – – – – – 24:16 – – – – – 581

The modules and their communication primitives provide
the following functions: (1) collecting data from the laser
sensors (LaserRF), (2) generating an obstacle map (Aspect),

(3) navigating using the near diagram approach (NDD), (4)
managing the low level robot wheel controller (RFLEX), (5)
emulating the communication with an orbiter (Antenna), (6)

123

www.manaraa.com

446 S. Bensalem et al.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700

S
iz

e
of

 B
D

D
(M

b)

Gas Station: Number of pumps

D-Finder: IPM verification
D-Finder: IFP verification

D-Finder: GPM verification
D-Finder: GFP verification

NuSMV

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

S
iz

e
of

 B
D

D
(M

B
)

Number of philosophers

D-Finder: IPM verification
D-Finder: IFP verification

D-Finder: GPM verification
D-Finder: GFP verification

NuSMV

(a) (b)

Fig. 6 The comparison on memory consumed by CUDD package. a Gas Station, b Dining Philosophers

Table 3 Comparison between different methods on the Utopar case study

Component information Time (min) Memory (MB)

Scale Location Interaction GFP GPM IFP IPM GFP GPM IFP IPM

100 UC, 400 CU 1,503 41,404 0:59 3:35 0:56 2:15 27 50 42 59

200 UC, 400 CU 2,203 82,404 2:15 8:05 1:45 4:13 40 56 42 59

300 UC, 400 CU 2,903 123,404 3:45 13:38 2:29 7:12 52 67 42 59

400 UC, 400 CU 3,603 164,404 6:08 20:32 3:46 8:02 64 79 42 59

100 UC, 900 CU 2,503 91,904 2:47 17:52 2:44 9:56 75 64 66 50

200 UC, 900 CU 3,203 182,904 7:11 38:41 4:59 19:47 117 82 66 50

300 UC, 900 CU 3,903 273,904 – – 7:18 31:29 – – 66 50

100 UC, 1600 CU 3,903 162,604 12:02 59:30 5:53 33:02 203 96 160 73

200 UC, 1600 CU 4,603 323,604 – – 17:46 – – – 160 –

providing power and energy for the robot (Battery), (7) heat-
ing the robot in a low temperature environment (Heating),
and (8) controlling the movement of two cameras (Platine).

We propose the followingmapping for the functional level
of DALA:

Functional level ::= (Module)+

Module ::= (Execution Service)+

.(Execution Task)+.(Poster)+

.(Control Service)+.(I nter f ace Server)+

.(Lock).(T imer)

Execution Service ::= (Service Controller).(Activi t y)

Execution Task ::= (Task Controller).(Scheduler)

.[Permanent].[T imer]
I nter f ace Server ::= (Message Box).(T imer)

where + (plus) means the presence of one or more subcom-
ponent and . (dot) means the composition of different com-
ponents and [] means the optional components.

Fig. 7 Module structure in the functional level of DALA

Each module of the functional level of DALA in Fig. 7 is
a three-tier composite component with (1) Execution Tasks
including a Task Controller which controls to trigger, block,

123

www.manaraa.com

Component-based verification using incremental design and invariants 447

Fig. 8 An execution service in DALA

Table 4 Deadlock-freedom
checking on DALA by I PM
method

Module Components Locations Interactions States Time (min)

LaserRF 43 213 202 2.4 × 1021 1:22

Aspect 29 160 117 1.2 × 1016 0:39

NDD 27 152 117 1014 8:16

RFLEX 56 308 227 1030 9:39

Battery 30 176 138 2.7 × 1015 0:26

Heating 26 149 116 9.1 × 1013 0:17

Platine 37 174 151 5.8 × 1017 0:59

LaserRF + Aspect + NDD 97 523 438 2.9 × 1051 40:57

NDD + RFLEX 82 459 344 1044 73:43

and stop a Service and a Scheduler executes the activities of
Services in a cyclic manner, (2) Execution Services, each of
which consists of a Service Controller checking the valid-
ity of the parameters and the execution of its corresponding
activity, and an Activity executing the commands inside the
service, (3) Control Services, each of which takes negligible
time to execute and is responsible for setting and returning
variable values, (4) Interface Server, which is responsible for
receiving requests from some external source and then for-
warding the requests to the associated service, (5) Posters,
which are produced by the corresponding module and can be
read by other modules, and (6) Lock, which is a semaphore
that ensures the mutual exclusion between different Execu-
tion Tasks, Services when manipulating Posters. As there
are several modules and most modules contain more than
twenty components with complicated interactions, the num-
ber of variables required to verify the whole system in the
symbolic computation is beyond the capacity of current sym-

bolic methods. So we have to verify the modules involved in
certain functionalities to ensure the corresponding correct-
ness.

Each Execution Task and Interface Server have a Timer to
control the period of its execution. Also there is a Timer for
the posters of a module to control the freshness of the data
in the posters.

Observe that the topology of a module in DALA is more
complex than those of the other systems we have considered
so far. It is well known that an adequate variable ordering
can drastically improve performance of symbolic verifica-
tion. However, the topology is so complex that we cannot
always find such an ordering for the computation of invari-
ants in the incremental method. Furthermore, the behavior
of components inside a module is much more complex than
for the considered examples. In Fig. 8, we present a compos-
ite component template for Execution Service. Usually, one
module contains several services. And the size of Execution

123

www.manaraa.com

448 S. Bensalem et al.

Task is proportional to the number of services, which results
in more location variables.

Wefirst checkeddeadlock-freedomof individualmodules.
Both GPM and IFP failed to check deadlock-freedom for
all modules except Antenna that could be checked by using
GPM. However, by using IPM, we could generate invariants
and check the deadlock-freedom of all the modules. Table 4
shows times for computing invariants for checking deadlock-
freedom of seven modules by the incremental method. It also
gives an estimate of the number of states permodule.Wehave
successively detected (and corrected) two deadlocks within
Antenna and NDD, respectively. Moreover, using the tech-
nique in [18], we could check deadlock-freedom of NDD in
several hours. With the proposed incremental methods, we
could even verify deadlock-freedom for the composite com-
ponent including the modules LaserRF, Aspect and NDD,
and data-freshness property for the composite component
including Aspect and NDD.

Besides checking deadlock-freedom, we have verified for
some modules causality properties that is a service can be
triggered only after a certain service has completed suc-
cessfully. Using invariant preservation results introduced in
Sect. 3, we removed some tight synchronizations between
components10 that do not synchronize directly with the com-
ponents involved in the property and obtained a module with
looser synchronized interactions. Using invariant preserva-
tion results, we could check satisfaction of a causality prop-
erty in 17 seconds, while it took 1003 seconds for verification
on the initial module. A detailed description of DALA and
properties verified by combining incremental techniques and
invariant preservation results can be found in [19].

7 Conclusion

We present new techniques for computing interaction invari-
ants of composite systems described inBIP. We show how to
exploit incremental design and also propose sufficient con-
ditions that guarantee invariant preservation when new inter-
actions are added to the system. Our techniques have been
implemented in the D-Finder toolset and have been applied
to complex case studies that are beyond the capabilities of
existing tools.

A main advantage of our method is tuning for a particular
class of properties that is deadlock-freedom,without enumer-
ating all reachable states. The reason being that interaction
invariants can catch well global synchronization which is
the cause of global deadlock. To check other safety proper-
ties, we need stronger invariants to obtain a better approxi-
mation of reachable states. Experimental results show that

10 The latter can be seen as an abstraction of the component in where
some services have been removed.

interaction invariants capture adequately these properties.
In contrast to other compositional verification techniques
such as Assume/Guarantee techniques, our method scales
up smoothly with the complexity of components and is com-
pletely automated. Incremental techniques advantageously
exploit modularity of hierarchically structured components.
Invariant preservation based on the looser synchronization
preorder can be used in a more ad hoc manner to cope with
complexity as shown for the DALA robot case study.

Interaction invariants are over-approximations of the set
of reachable states of the system. When D-Finder detects a
deadlock, the reachability of the detected deadlock can be
checked automatically [22].

Various other tools can be used to verify concurrent pro-
grams (e.g., software model checkers). However, to the best
of our knowledge, the ability ofBIP andD-Finder to synthe-
size C code to guarantee that the various components work
in a proper way is unique. Also, contrary to existing tools,
we take the flow of the design and the hierarchy between the
components into account.

There are several directions for future research. As we
have seen in Sect. 5, our new techniques are complementary.
As a future work, we plan to set up a series of new experi-
ments to give a deeper comparison between these techniques.
This should help the user to select the technique to be used
depending on the characteristics of case study.

Finally, we will extend all our results to the new version
of BIP, for real-time systems [1].

References

1. Abdellatif, T., Combaz, J., Sifakis J.: Model-based implementation
of real-time applications. In: EMSOFT, pp. 229–238, Scottsdale,
AZ, USA (2010)

2. Alfaro, L.D., Henzinger, T.A.: Interface theories for component-
based design. In: EMSOFT, pp. 148–165. Springer (2001)

3. Alur, R., Henzinger, T.A.: Reactive modules. Form. Methods Syst.
Des. 15(1), 7–48 (1999)

4. Balarin, F., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli,
A., Sgroi, M., Watanabe Y.: Modeling and designing heteroge-
neous systems. In: Concurrency and Hardware Design, pp. 228–
273 (2002)

5. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and sta-
tic driver verifier: Technology transfer of formal methods inside
Microsoft. In: IFM, pp. 1–20. Springer (2004)

6. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: CAV, pp. 260–264
(2001)

7. Ball, T., Rajamani S.K.: The SLAM project: debugging system
software via static analysis. In: POPL, pp. 1–3 (2002)

8. Basu, A., Bensalem, S., Bozga, M., Bourgos, P., Maheshwari, M.,
Sifakis, J.: Component assemblies in the context of manycore. In:
FMCO, pp. 314–333 (2011)

9. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B.,
Legay, A.: Statistical abstraction and model-checking of large het-
erogeneous systems. In: FMOODS/FORTE, vol. 6117, LNCS, pp.
32–46. Springer (2010)

123

www.manaraa.com

Component-based verification using incremental design and invariants 449

10. Basu, A., Bensalem, S., Bozga,M., Combaz, J., Jaber,M., Nguyen,
T.-H., Sifakis, J.: Rigorous component-based system design using
the bip framework. IEEE Softw. 28(3), 41–48 (2011)

11. Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A.,
Sifakis, E.: Verification of an afdx infrastructure using simulations
and probabilities. In: RV, pp. 330–344. Springer (2010)

12. Basu, A., Bozga,M., Sifakis, J.: Modeling heterogeneous real-time
components in BIP. In: SEFM, pp. 3–12. IEEE Computer Society
(2006)

13. Basu, A., Mounier, L., Poulhis, M., Pulou, J., Sifakis, J.: Using BIP
for modeling and verification of networked systems—a case study
on tinyos-based networks. In: NCA, pp. 257–260 (2007)

14. Bensalem, S., Bozga, M., Delahaye, B., Jegourel, C., Legay, A.,
Nouri, A.: Statistical model checking qos properties of systems
with SBIP. In: ISOLA, pp. 327–341 (2012)

15. Bensalem, S., Bozga, M., Legay, A., Nguyen, T.-H., Sifakis, J.,
Yan, R.: Incremental component-based construction and verifica-
tion using invariants. In: FMCAD, pp. 257–265 (2010)

16. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: Composi-
tional verification for component-based systems and application.
In: ATVA, pp. 64–79. Springer (2008)

17. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis J.: D-Finder: A
tool for compositional deadlock detection and verification. In:CAV,
pp. 614–619. Springer (2009)

18. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: Composi-
tional verification for component-based systems and application.
IET Softw. 4, 179–235 (2010)

19. Bensalem, S., de Silva, L., Gallien, M., Ingrand, F., Yan, R.: “Rock
solid” software: a verifiable and correct by construction controller
for rover and spacecraft functional layers. In: ISAIRAS, pp. 859–
866 (2010)

20. Bensalem, S., de Silva, L., Griesmayer, A., Ingrand, F., Legay, A.,
Yan, R.: A formal approach for incremental construction with an
application to autonomous robotic systems. In: SC, vol. 6708, pp.
116–132. Springer (2011)

21. Bensalem, S., Gallien, M., Ingrand, F., Kahloul, I., Nguyen, T.-H.:
Toward a more dependable software architecture for autonomous
robots. IEEE Robot. Autom. Mag. 16(1), 1–11 (2009)

22. Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T.-H., Peled,
D.: Efficient deadlock detection for concurrent systems. In: MEM-
OCODE, pp. 119–129 (2011)

23. Bensalem, S., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.: Incre-
mental invariant generation for compositional design. In: TASE,
pp. 157–167 (2010)

24. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The soft-
ware model checker BLAST: applications to software engineering.
STTT 9(5–6), 505–525 (2007)

25. BIP. http://www-verimag.imag.fr/BIP,196.html?
26. Bliudze, S., Sifakis, J.: The algebaof connectors—structuring inter-

action in BIP. IEEE Trans. Comput. 57, 1315–1330 (October 2008)
27. Bluespec. http://www.bluespec.com/
28. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic

architectures using Dy-BIP. In: SC, pp. 1–16. Springer, Berlin
(2012)

29. Bozga, M., Sfyrla, V., Sifakis, J.: Modeling synchronous Systems
in BIP. In: EMSOFT, pp. 77–86. ACM, October (2009)

30. Chandy, K.M.: Parallel Program Design: A Foundation. Addison-
Wesley Longman, Boston (1988)

31. Chaudron, M.R.V., Eskenazi, E.M., Fioukov, A.V., Hammer D.K.:
A framework for formal component-based software architecting.
In: SAVCBS, pp. 73–80 (2001)

32. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe
nets. In: FSTTCS, pp. 326–337. Springer, London, UK (1993)

33. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a
new symbolic model checker. Int. J. Softw. Tools Technol. Transf.
2, 410–425 (2000)

34. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The
MIT Press, Cambridge (1999)

35. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to
do: an evaluation of automated assume-guarantee reasoning. ACM
Trans. Softw. Eng. Methodol. 17(2), 1–52 (2008)

36. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning
assumptions for compositional verification. In: TACAS, pp. 331–
346 (2003)

37. Combest. http://www.combest.eu/home/
38. Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: Incre-

mental algorithms for inter-procedural analysis of safety properties.
In: CAV, pp. 449–461. Springer (2005)

39. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: beyond
safety. In: CAV, pp. 415–418 (2006)

40. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.:
Timed i/o automata: A complete specification theory for real-time
systems. In: HSCC, pp. 91–100.ACM,NewYork,NY,USA (2010)

41. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.:
Timed I/O automata: a complete specification theory for real-time
systems. In: HSCC, pp. 91–100 (2010)

42. de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Roy, P., Sorea,
M.: Sociable interfaces. In: FroCos, pp. 81–105 (2005)

43. de Roever, W.-P., de Boer, F., Hannemann, U., Hooman, J.,
Lakhnech,Y., Poel,M., Zwiers, J.: ConcurrencyVerification: Intro-
duction to Compositional and Noncompositional Methods. Cam-
bridge University Press, Cambridge (2000)

44. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for
DPLL(T). In: CAV, pp. 81–94. Springer (2006)

45. Farzan, A., Chen, Y.-F., Clarke, E. M., Tsay, Y.-K. , Wang, B.-
Y.: Extending automated compositional verification to the full
class of omega-regular languages. In: TACAS, pp. 2–17. Springer
(2008)

46. Flanagan, C., Qadeer, S.: Thread-modular model checking. In:
SPIN, pp. 213–224. Springer (2003)

47. Fleury, S., Herrb, M., Chatila, R.: GenoM: a tool for the specifica-
tion and the implementation of operating modules in a distributed
robot architecture. In: IROS, pp. 842–848 (1997)

48. Fritzson, P., Engelson, V.: Modelica a unified object-oriented lan-
guage for system modeling and simulation. In: ECOOP, pp. 67–90
(1998)

49. Giannakopoulou, D., Păsăreanu, C. S., Barringer, H.: Assumption
generation for software component verification. In: ASE, pp. 3–12.
IEEE Computer Society (2002)

50. Gößler, G., Sifakis,. J.: Priority systems. In: FMCO, pp. 314–329
(2003)

51. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and
refinement for verifying multi-threaded programs. In POPL, pages
331–344. ACM, 2011

52. Heimbold, D., Luckham, D.: Debugging Ada tasking programs.
IEEE Softw. 2(2), 47–57 (1985)

53. Henzinger, T.A., Hottelier, T., Kovács, L., Rybalchenko, A.: Ali-
gators for arrays. In: LPAR, TACAS, pp. 348–356 (2010)

54. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstrac-
tion. In: POPL, pp. 58–70. ACM (2002)

55. Henzinger, T.A., Qadeer, S., Rajamani, S. K.: You assume, we
guarantee: methodology and case studies. In: CAV, pp. 440–451.
Springer (1998)

56. Hermenegildo, M., Puebla, G., Marriott, K., Stuckey, P.J.: Incre-
mental analysis of constraint logic programs.ACMTrans. Program.
Lang. Syst. 22(2), 187–223 (Mar. 2000)

57. Jones, C.B.: Specification and design of (parallel) programs. In:
IFIP Congress, pp. 321–332 (1983)

58. Khendek, F., Bochmann, G.V.: Incremental construction approach
for distributed system specifications. In: Proceedings of the Interna-
tional Symposium on Formal Description, Techniques, pp. 26–29
(1993)

123

http://www-verimag.imag.fr/BIP,196.html?
http://www.bluespec.com/
http://www.combest.eu/home/

www.manaraa.com

450 S. Bensalem et al.

59. Larsen, K.G.: Modal specifications. In: Automatic Verification
Methods for Finite State Systems, pp. 232–246 (1989)

60. Lau, K.-K., Ng, K.-Y., Rana,T., Tran, C.M.: Incremental construc-
tion of component-based systems. In: CBSE, pp. 41–50. ACM,
New York, NY, USA (2012)

61. Lynch, N.A., Tuttle, M.R.: An introduction to input/output
automata. CWI Q. 2, 219–246 (1989)

62. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems:
Safety. Springer, New York (1995)

63. Moura, L.D., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS,
pp. 337–340. Springer (2008)

64. Nguyen, T.-H.: Constructive Verification of Component-Based
Systems. PhD Thesis, Institut National Polytechnique de Grenoble
(2010)

65. Patil, S.S.: Limitations and Capabilities of Dijkstra’s Semaphore
Primitives for Coordination among Processes. Cambridge, MA:
MIT, Project MAC, Computation Structures Group Memo 57, Feb
(1971)

66. Pnueli, A.: In transition from global to modular temporal reasoning
about programs. Log. Models Concurr. Syst. F13, 123–144 (1985)

67. Popeea, C., Rybalchenko, A.: Compositional termination proofs
for multi-threaded programs. In: TACAS, pp. 237–251 (2012)

68. Queille, J.-P., Sifakis, J.: Specification and verification of concur-
rent systems in CESAR. In: ICALP, pp. 337–351. Springer (1982)

69. Somenzi, F.: CUDD: CU decision diagram package
70. Team, O.: The Omega, library (1996)
71. Thiele, L., Bacivarov, I., Haid, W., Huang, K.: Mapping Appli-

cations to Tiled Multiprocessor Embedded Systems. In: ACSD,
pp. 29–40. IEEE Computer Society (2007)

72. Tripakis, S., Stergiou, C., Shaver, C., Lee, E.A.: A modular formal
semantics for ptolemy. Math. Struct. Comput. Sci. 23, 834–881
(2013)

Saddek Bensalem Professor at
the University of Joseph Fourier
(Grenoble). He received his
Ph.D. in Computer Science from
INP Grenoble (Institut National
Polytechnique de Grenoble). His
area of expertise is modeling and
validation of real-time systems.
He has an excellent background
and experience in software and
system verification. He has spent
two years at the SRI International
inMenlo Park California and one
year at the University of Stan-
ford as Visiting Scientist. He has
consulted for NASA Ames. Cur-

rently, he works on component-based modeling. His current work
is focused on verification of real-time applications in general and
autonomous systems in particular. He is also the technical project leader
for Verimag activities in European and industrial projects.

Marius Bozga Research Engi-
neer at Centre national de la
recherche scientifique (CNRS).
He received his Ph.D. in Com-
puter Science fromJosephFourier
University of Grenoble. His area
of expertise covers program ver-
ification, modeling, validation
and verification of real-time sys-
tems. He is the major contributor
of many tools such as BIP Tool-
box, IF.

Axel Legay Researcher at Insti-
tut national de recherche en
informatique et en automatique
(INRIARennes). He received his
Ph.D. in Computer Science from
University of Liege, Belgium.
His main research interests are
in formal verification. He is a
founder and major contributor of
statistical model checking (a sta-
tistical variant of model check-
ing effectively used in industry).
He is a referee for top journals
and conferences in formal verifi-
cation.

Thanh-Hung Nguyen Lecturer
andResearcher at SoftwareEngi-
neering Department, Hanoi Uni-
versity of Science and Tech-
nology. He received his Ph.D.
and Master degrees in Computer
Science from Grenoble Institute
of Technology. He has spent
six years at Verimag Laboratory,
where he focused on construc-
tion and verification methods for
component-based systems. His
research interests include the-
ory, methods and tools for the
compositional and verification of

component-based systems. He also has the experience in constructing
complex component-based systems.

123

www.manaraa.com

Component-based verification using incremental design and invariants 451

Joseph Sifakis Director of the
“Rigorous System Design” Lab-
oratory at EPFL, director of
the “Center for Integrative
Research” in Grenoble, CNRS
researcher and the founder of
Verimag laboratory, a leading
research laboratory in the area of
critical embedded systems estab-
lished in Grenoble, in 1993. His
research interests cover funda-
mental and applied aspects of
embedded systems design. The
main focus of his work is on the
formalization of system design

as a process leading from given requirements to trustworthy, optimized
and correct-by-construction implementations. He is a member of the
editorial board of several journals, co-founder of the International Con-
ference on Computer Aided Verification (CAV) and a member of the
SteeringCommittee of the EMSOFT (Embedded Software) conference.

RongjieYanAssistant researcher
at the Institute of Software, Chi-
nese Academy of Sciences. She
received her Ph.D. degree from
the institute of Software, Chi-
nese Academy of Sciences. She
has spent two years at Veri-
amg, where she focused on
compositional and incremental
verification methodology, and
correctness-by-construction of-
component-based systems. Her
current reserch interests include
modeling and formal verification
of embedded systems, verifica-

tion of real-time systems, and extra-functional analysis of embedded
systems.

123

www.manaraa.com

Software & Systems Modeling is a copyright of Springer, 2016. All Rights Reserved.

	Component-based verification using incremental design and invariants
	Abstract
	1 Introduction
	Related work
	2 Component-based system design
	2.1 Components and interactions
	2.2 Incremental design
	2.2.1 Incremental construction
	2.2.2 Looser synchronization preorder

	3 Invariants and invariant preservation
	3.1 Component and system invariants
	3.2 Invariant preservation

	4 Efficient computation of interaction invariants
	4.1 Positive mapping-based interaction invariant computation
	4.2 Fixpoint-based computation of interaction invariants
	4.3 Incremental computation of interaction invariants based on positive mapping method
	4.4 Incremental computation of interaction invariants based on fixpoint method

	5 Implementation
	6 Experimentation
	6.1 Examples
	6.2 Case study on Utopar transportation system
	6.3 Case study on robotic systems

	7 Conclusion
	References

